Database Cracking: Fancy Scan, not Poor Man’s Sort!

Holger Pirk
CWI, Amsterdam
holger@cwi.nl

Stefan Manegold
CWI, Amsterdam
manegold@cwi.nl

ABSTRACT

Database Cracking is an appealing approach to adaptive indexing:
on every range-selection query, the data is partitioned using the sup-
plied predicates as pivots. The core of database cracking is, thus,
pivoted partitioning. While pivoted partitioning, like scanning, re-
quires a single pass through the data it tends to have much higher
costs due to lower CPU efficiency. In this paper, we conduct an
in-depth study of the reasons for the low CPU efficiency of pivoted
partitioning. Based on the findings, we develop an optimized ver-
sion with significantly higher (single-threaded) CPU efficiency. We
also develop a number of multi-threaded implementations that are
effectively bound by memory bandwidth. Combining all of these
optimizations we achieve an implementation that has costs close to
or better than an ordinary scan on a variety of systems ranging from
low-end (cheaper than $300) desktop machines to high-end (above
$60,000) servers.

1. INTRODUCTION

One of the litanies about data management systems is that they
are I/0O bound, i.e., limited in performance by the bandwidth to
the primary storage medium (be it disk or RAM). Indeed, many
operations like scans or aggregations are relatively easy to imple-
ment at sufficiently high CPU-efficiency to make I/O bandwidth
the dominating cost factor. However, other operations like joins or
index-building are mostly bound by the computation speed of the
CPU. When exploring alternative algorithms for data management
operations, it is crucial to understand the contributing cost factors
for the existing as well as the new implementation.

Database Cracking was introduced as an alternative to scanning
to evaluate range-predicates on relational data. Rather than copying
the matching tuples into a result buffer, Cracking physically parti-
tions the data in-place using the specified range as pivot(s). Since
one of the resulting partitions contains only the qualifying tuples,
Cracking effectively answers the query. Additionally, the reordered
data can be combined with an appropriate secondary data structure
(usually a tree or a hash) to form a partial clustered index. Assum-
ing that the next query can benefit from such a clustered index, the
extra costs for the physical reordering will pay off over time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

DaMoN 14, June 22 - 27 2014, Snowbird, UT, USA

Copyright 2014 ACM 978-1-4503-2971-2/14/06 ...$15.00.

Eleni Petraki
CWI, Amsterdam
petraki@cwi.nl

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

Martin Kersten
CWI, Amsterdam
mk@cwi.nl

13
12

10
8.0
6.0

4.0

Wallclock time in s

2.0

0.0/ TE—
Parallel Scanning

Cracking

Parallel Sorting

Figure 1: Costs of Database Operations

Since the fix-point of Cracking is fully sorted data, its costs are
usually compared to those of fully sorting the data. With recent
advancements in data (parallel) sorting algorithms [7], however,
Cracking appears increasingly unattractive. To illustrate this, Fig-
ure 1 shows a quick comparison of the respective operations on
512 Million 32-bit integer values on a 4-Core Sandy Bridge CPU.
It shows that while an off-the-shelf (Parallel) Mergesort implemen-
tation! is about 30 times more expensive than a (quasi I/O bound)
(Parallel) Scan, it is only three times as expensive as MonetDB’s
implementation of Cracking [19]. Even though both Scanning and
Cracking, (sequentially) read and write the same amount of data,
they have vastly different costs. The performance difference must,
thus, be due to their computational costs: Cracking is, unlike Scan-
ning, not I/O bound. However,

we believe that, if implemented with the underlying hardware in
mind, Cracking can be (roughly) I/O bound.

To validate this hypothesis, we make the following contributions:

e We conduct an in-depth study of the contributing performance
factors of the “classic” Cracking implementation.

e Based on the findings, we develop a number of optimiza-
tions based on “standard” techniques like predication, vec-
torization and manually implemented data parallelism using
SIMD instructions.

e We develop two different parallel algorithms that exploit thread
level parallelism to make use of multiple CPU cores.

e We rigorously evaluate all developed algorithms on a number
of different systems ranging from low-end desktop machines
to high-end servers.

IPart of the GNU libstdc++ Version 4.8.2

The rest of the paper is structured as follows: In Section 2, we
provide an overview of related work as well as necessary back-
ground knowledge on the optimization techniques we applied. In
Section 3 we present our analysis of the Cracking implementation
in MonetDB discussing its problems with regard to CPU efficiency.
We present our CPU-optimized sequential Cracking algorithms in
Section 4, and our parallel implementations in Section 5. We eval-
uate these algorithms on a range of different hardware platforms in
Section 6 and conclude in Section 7.

2. BACKGROUND & RELATED WORK

Before discussing the efficient implementation of Database Crack-

ing, let us briefly establish the background knowledge regarding
a) some architectural traits of modern CPUs that are relevant with
respect to implementation efficiency, and b) partial and adaptive
indexing techniques that are related to our approach.

CPU Efficiency Techniques

Advances in processor architectures and semiconductors have im-

proved the performance of computer systems steadily over the years.

However, the stagnation of clock frequency prompted the necessity
for parallelization. Thus, modern CPUs provide several forms of
parallelism, such as instruction level parallelism, data level paral-
lelism and thread level parallelism.

Processors achieve Instruction Level Parallelism (ILP) by over-
lapping the execution of multiple instructions in a single clock cy-
cle [23]. Independent instructions are executed in parallel if there
are sufficient resources for all of them. ILP can be exploited by
using multiple execution units to execute multiple instructions si-
multaneously (superscalar execution), or by executing instructions
in any order that does not violate data dependencies (out-of-order
execution) or even predicting the execution of instructions (spec-
ulative execution) [16]. Thus, care has to be taken to ensure that
there are sufficiently many independent instructions [3, 5].

Performance improvement can also be achieved by exploiting
Data Level Parallelism (DLP). In its extreme, vector processors op-
erate on the input arrays using one instruction per vector operation.
In practice, most modern CPUs provide Single Instruction Multi-
ple Data (SIMD) instructions that operate on a limited number of
values (vector lengths ranging from 128 to 512 bit).

Thus, fewer instructions are fetched and executed. However,
vector instructions usually have longer latencies and lower through-
put than their scalar counterparts. They also rely on their inputs be-
ing stored in a contiguous (often even SIMD-word-aligned) mem-
ory region. In the most modern instruction sets (AVX2 and AVX-
512), there is support for gather (AVX2 & AVX-512) and scatter
(only AVX-512) instructions that fetch data from, respectively save
data to, multiple, non-contiguous memory locations. Recent pa-
pers study the implementation of various database operations, e.g.,
scans, aggregations, index operations and joins, using SIMD in-
structions [30], while [4, 24] provide a thorough analysis of hash
join and sort-merge join using SIMD. These operations signifi-
cantly benefit from the SIMD technology by exploiting DLP and
by eliminating branch mispredictions.

Thread Level Parallelism (TLP) allows multiple threads to work
simultaneously. This allows an application to take advantage of
TLP by splitting into independent parts that run in parallel. The ad-
vantage of multithreading is even more significant in systems that
are equipped with multiple CPUs or multicore CPUs (chip multi-
processors). In addition, many chip multiprocessors incorporate the
hyper threading technology which increases parallelism by allow-
ing each physical core to appear as two logical cores in the operat-
ing system. Heavy load components such as instruction pipelines,

(a)

mmmmm

X (b) M

L

Figure 2: Original Cracking (single-threaded)

registers or the execution units are usually replicated while others,
such as caches, are shared among the logical cores. Basic database
operations have been reexamined exploiting TLP, e.g., aggregations
[8] and join algorithms [4, 24].

Indexing Techniques

In the majority of automated index tuning approaches, index tun-
ing is clearly distinct from query processing. Offline indexing ap-
proaches [2, 9, 31] analyze a given workload and select/create the
necessary indexes before the workload enters the system, whereas
online indexing approaches [6, 25, 28] continuously monitor the
workload and periodically reevaluate the index selection. In both
cases, indexes equally cover all data items, even if some of them
are not heavily queried. Thus, both index tuning and index cre-
ation may negatively affect the workload performance if there is
not enough idle time to build the indexes or/and if the workload
arbitrarily changes.

Adaptive indexing is a recent, lightweight approach to self-tuning
databases: data reorganization is integrated with query process-
ing. Adaptive indexing has been studied in the context of main-
memory column-stores [19], Hadoop [26] as well as for improv-
ing more traditional disk-based settings [14]. It has been shown
to work for many core database architecture issues such as up-
dates [20], multi-attribute queries [21], concurrency control [10,
11], partition-merge-like logic [14, 22]. In addition, [12] shows
how to benchmark adaptive indexing techniques, while stochastic
database cracking [15] shows how to be robust on various query
workloads. Finally, [13] shows how adaptive indexing can apply to
key columns.

Database Cracking [19, 18] is the initial implementation of the
adaptive indexing concept. Database Cracking initializes a partial
index for an attribute the first time it is queried. Future queries on
the same attribute further refine the index by partitioning the data
using the supplied query predicates as pivots (similar to quicksort
[17]) and updating the secondary dictionary structure. Since the
reorganization of the index is part of the select operator, Database
Cracking can be seen as an alternative implementation of scanning.
While dictionary maintenance becomes the dominant cost factor as
the average partition size decreases [29], the pivoted partitioning
is the most important factor in the beginning. In this paper we
focus purely on this step of the process, disregarding dictionary
maintenance or order propagation to other columns. We believe
that this makes our work orthogonal, i.e., easy to combine with
other work in the field of Database Cracking.

3. CLASSIC CRACKING

Database Cracking is a pleasantly simple approach to adaptive
indexing. However, it is not trivial to implement efficiently. In this
section, we recapitulate the original Cracking algorithm and we
examine the problems with the current implementation regarding
CPU efficiency.

The Algorithm

The original, single-threaded Cracking algorithm is illustrated in
Figure 2. Figure 2(a) depicts an uncracked piece. Red indicates

@L1l Misses @ L2 Misses

@L1D Misses @ L3 Misses
1.5B
1.4B

1.2B
1.0B
800M
600M
400M

200M

00 — TmmEm

Scanning

I
Cracking Sorting

(a) Cache Misses

@ Data Stalls @ Bad Speculation
@ Pipeline Frontend @ Pipeline Backend

@ Retiring
1.0

0.80
0.60
0.40

0.20

0.0! = -

Scanning Cracking Sorting
(b) Costs breakdown by CPU component

Figure 3: Cost Breakdown of Database Operations

values that are lower than the pivot, while blue indicates values that
are greater than the pivot. Two cursors, x and y, point at the first
and at the last position of the piece respectively. The cursors move
towards each other, scanning the column, skipping values that are
in the correct position while swapping wrongly located values. The
result of this process is the cracked piece shown in Figure 2(b).
Values that are less/greater than the pivot finally lie in a contigu-
ous space. To crack a piece that consists of n values, the two cur-
sors read all n values while moving towards each other resulting
in O(n) complexity in terms of computation as well as memory
access. Thus, Cracking and Scanning are in the same complexity
class but have significantly different costs (recall Figure 1).

Analysis

The classic way of analyzing in-memory data management system
performance is to count the number of cache misses at different
levels. This stems from the assumption that data management per-
formance is dominated by data access costs. However, as displayed
in Figure 3a, the number of cache misses do not provide an expla-
nation for the performance difference of Cracking and scanning. In
fact, scanning induces more cache misses because it produces the
result set out of place. This indicates that merely looking at the
number of cache misses is not sufficient - we have to determine the
costs induced in other components of the CPU.

To do so, we conducted a systematic analysis of the costs compo-
nent according to the Intel optimization manual for our (Ivy Bridge)
CPU [1]. The breakdown in Figure 3b shows that Cracking merely
spends 7% of the cycles stalling because of data access latencies.
This explains why the number of cache misses alone is a poor pre-
dictor for the overall performance. The other cost factors, however
give a much better explanation of the performance difference be-
tween Cracking and scanning 2: The breakdown shows that 14%
of the cycles 3 are spent retiring (useful) instructions at the end of
the execution pipeline. Assuming that all instructions are neces-
sary, this indicates that Cracking spends almost 10 times as much
CPU cycles as scanning doing actual work. It also gives us an upper
bound on the performance that can be achieved using a single CPU
core: 14% of the current runtime, i.e., a speedup factor of about
7. Most importantly, however, this breakdown indicates where
there is most potential for performance improvement: in eliminat-
ing branch mispredictions which 1. cause a significant amount of

2In this normalized plot, equal height bars indicate an absolute dif-
ference of almost factor 10, Figure 1 providing the scale

3or, more accurately microop execution slots

wasted cycles due to bad speculation and 2. prevent instructions
from entering the pipeline at the frontend.

4. CPU EFFICIENT CRACKING

Based on the outcome of our analysis in the previous section, we
can direct our efforts to the performance painpoints of the original
Cracking implementation, starting with branch mispredictions.

Predication

A common technique to address costs for branch mispredictions
is “predication”. The idea is to unconditionally write output but
only advance one of the output cursors by the value of the evalua-
tion of the predicate. This decouples the writing operation from the
predicate evaluation and, therefore, effectively eliminates the con-
ditional branch instructions at the costs of more write instructions.
Since these write instructions generally only operate in L1 cache,
the performance benefit for, e.g., selections, can be significant [27].

Unfortunately, not all algorithms are equally amenable to opti-
mization through predication: implementations of out-of-place al-
gorithms like selections can speculatively write to the output buffer
as long as they write to empty slots. In-place algorithms, how-
ever, have to ensure that they do not overwrite any of the data val-
ues. They, therefore have to create backup copies of values that
are speculatively overwritten. Naturally, deciding which value to
backup has to be branch-free as well.

To achieve this, we developed a branch-free cracking implemen-
tation based on predication (illustrated in Figure 4). The funda-
mental idea is to create a backup copy of the value that is specula-
tively overwritten in a “backup” slot (we term the slot containing
the value that is currently processed “active”). Based on this idea,
each iteration goes through multiple phases with all (significant)
operations within a phase being independent. At the beginning of
each iteration, the to-be-cracked array is in a “consistent” state (see
Figure 4a), i.e., each input value is stored exactly once in the array*
and the “active” and “backup” slots contain the values at both cur-
sors. In the Compare & Write Phase (see Figure 4b), the “active”
value is written to both cursors and (independently) compared to
the pivot. The result of the comparison (cmp) is used in the next
phase (see Figure 4c) to advance the output cursors. One cursor is
advanced by the value of cmp, the other by 1 — cmp. This ensures

#Note that this does not imply that there cannot be duplicate values
in the input

pivot cmp active backup

L]
L N
[312]412]8[119[3[8[1[5[0[7]5]7]

(a) Consistent State

13[214[2]8/1[9/318[1/5/0]715(3]

(b) Compare & Write Phase

pivot cmp active backup

13[2[4[2]8[1]9]3[8]1[5]0]715]3|

(c) Advance Cursor Phase

pivot cmp active backup

) [7]

JL O &
[3[2]42]8[1]9[3[8[1[5[0[7[5[3]

(d) Backup Phase

Figure 4: Predicated Cracking

that only one of the cursors is advanced. In the last phase (see Fig-
ure 4), the value at the advanced cursor is backed up. To ensure a
branch-free implementation, we, again, use arithmetic calculations
rather than branching to select the right value to store. At the end of
each iteration, the backup and active slots switch roles (not shown
in figure).

We implemented this idea in two variants that vary in the way
they create the necessary backup copies of input values. The first
implementation creates the backup copies to a small (cache-resident)
buffer. This implementation has a slight disadvantage: the compiler
can either use multiple registers to hold the two slots of the local
buffer or flush the registers to L1-cache after each phase. To al-
leviate this problem, we developed a variant that uses one 64-bit
register to hold the “active” as well as the “backup” value. This
yields a slight performance benefit (see Section 6).

Vectorization

The main problem with the predicated implementation is the ef-
fort spent on backing up data (indicated by the Pipeline Backend
bar which includes costs for writing data in Figure 5). The main
tuning parameter for this operation is the granularity at which data
is copied. Naturally, copying larger chunks results in more pre-
dictable code (at compile-time as well as run-time). The extreme
case for this optimization would be copying the entire input-array,

@ Data Stalls @ Bad Speculation
@ Retiring @ Pipeline Frontend @ Pipeline Backend

1.0/ —

0.80
0.60
0.40

0.20

0.0

Vectorized Predicated

Original
Figure 5: Cost breakdown of single-threaded implementations

making it an out-of-place implementation. This is not only mem-
ory intensive but also cache-inefficient since it requires two scans
of the data. The natural solution to this problem is vectorization:
small, cache-resident chunks of the input data are copied and, sub-
sequently, partitioned out-of-place (see Figure 6). This has the ad-
vantage of producing tight, CPU-efficient loops in the (expensive)
partitioning phase while allowing bulk-backups of input values.
However, the lack of control in the partitioning phase slightly
complicates things in the backup: we have to deal with overflow-
ing output buffers. It is, therefore, not enough to back up one vector
per side since a half-full buffer may overflow into the adjacent one.
This requires additional backup slots to ensure that the distance be-
tween each read-cursor and the trailing write-cursor is greater than
the size of a vector. As visualized in Figure 6, three backup slots
are sufficient to maintain enough “slack space” for safe writing.

SIMD

Figure 5 indicates that more than 80% of the cycles of the cracking
implementation are now spent retiring (useful) instructions. This
indicates that, to further improve single-threaded performance, we
have to perform more work per instruction. This can be achieved by
the use of SIMD instructions. The AVX-2 instruction set of current
Intel CPUs provides instructions to gather values from multiple ad-
dresses into an SIMD word in a single instruction. The opposite,
i.e. scatter instructions, are, however, only available in AVX-512
which is, currently, only supported by the Intel Xeon Phi extension
cards. We, therefore, implemented Cracking using AVX-2 instruc-
tions to gather the input values. The main idea is to have one cursor
per SIMD lane, gathering values that satisfy the partitioning pred-
icate until the word is filled and can be flushed. We implemented
all necessary operations (comparison, cursor advancing, ...) using
256-bit SIMD instructions and predication.

During evaluation (see Section 6), we found that this algorithm
generally performs worse than the previously discussed implemen-
tations. We include the description primarily for completeness sake.

S. PARALLELIZATION

In this section we present two Cracking algorithms that exploit
thread-level parallelism, i.e., first a simple partition & merge paral-
lel algorithm, and then a refined variant of the simple algorithm.

Partition & Merge

The simple parallel Cracking algorithm divides an uncracked piece
into T consecutive partitions that are concurrently cracked by T
threads. Each thread cracks a partition by applying the original

JCE 177 AR I EECED AN 7

Figure 6: Vectorized Cracking

@
| i i i I

y2x3 y3x4 y4

wmnn-nnm-

/(b) ~

T

Figure 7: Simple Partition & Merge (multi-threaded)

Figure 8: Refined Partition & Merge (multi-threaded)

Cracking algorithm. Finally, during the merge phase, a single thread
swaps wrongly located blocks of values into their final position.
Figure 7 shows an instance of the simple parallel Cracking. Four
threads crack four partitions concurrently. Red indicates values that
are less than the pivot, while blue indicates values that are greater
than the pivot. After cracking all partitions, the merge phase takes
place, i.e., a single thread relocates blocks of elements to the correct
positions, resulting in the final cracked piece shown in Figure 7(b).
During the merge phase the relocation of data causes many cache
misses, which can be avoided with the refined partition & merge
Cracking described in the following subsection.

Refined Partition & Merge

The refined partition & merge Cracking algorithm divides the un-
cracked piece into 7 partitions. The center partition is consecu-
tive with size S = #elements/#threads, while the remaining 7 — 1
partitions consist of two disjoint pieces that are arranged concentri-
cally around the center partition. Assuming the selectivity is known
and it is expressed as a fraction of 1, the size of the left piece
equals to S * selectivity, while the size of the right piece equals
to S (1 — selectivity). For instance, in Figure 8(a), the size of the
disjoint pieces is equal, since the selectivity is 0.5 (50%). As in
the simple partition & merge Cracking, T threads crack the T par-
titions concurrently applying the original Cracking algorithm. The
thread that cracks the center (consecutive) partition, swaps values

Class CPU Cores | ISA RAM
Desktop AMD E-350 2 SSE4a | 8GB
Workstation | Intel i7-4770 80 AVX-2 | 32GB
Server 2 xIntel E5-2650 2x16° | AVX 256GB
HE Server 4xIntel E5-4657L | 4x24% | AVX 1024GB

Table 1: Hardware Setup

within this partition. Each thread that cracks two disjoint pieces
swaps wrongly located values between the two pieces. For exam-
ple, in Figure 8(a) one thread exchanges values between the first
and the last piece. Finally, a single thread (as in the simple parallel
algorithm) locates wrongly-located blocks to the correct positions.

Although the refined algorithm swaps values that are in longer
distance compared to the simple algorithm, it moves less data dur-
ing the merge phase, because more data is already in the correct
position. For instance, in Figure 8 only two values are located in
wrong positions, while in Figure 7, we relocate 6 blocks of 8 values
each. Both parallel algorithms make O(n) comparisons/exchanges
during the partitioning phase. However, the merging cost is signifi-
cantly lower for the refined partition & merge Cracking algorithm.

CPU Efficiency & Parallelization

In principle, the single-threaded CPU efficiency improvements as
presented in Section 4 are orthogonal to the thread-level parallelism
presented above. Consequently, we can combine both techniques,
hoping to accumulate their benefits. We focus on vectorization
as this proved to yield better single-threaded CPU efficiency than
predication or SIMD (cf., Sections 4 and 6).

Vectorization of the simple partition & merge Cracking algo-
rithm is straight-forward. We simply have each thread perform
vectorized Cracking instead of original Cracking on its contiguous
partition. With the refined partition & merge Cracking algorithm,
we need to additionally handle the case that, in case of skewed data,
one of the two write cursors exceeds its partition half, and thus
needs to “fast-forward” (or “jump”) to the other half to continue.

6. EVALUATION
Setup

We evaluated the presented implementations® on four different ma-
chines (see Table 1): a $300-class desktop machine, a $1,000-class
workstation, a $10,000-class server and a $60,000-class high-end
server. All experiments were evaluated on an array with 4GB of
32-bit integer values with varying selectivity/pivot position. We
used Fedora 20, a 3.13.5 Linux kernel and gcc version 4.8.2. Since
we compare single- as well as multi-threaded algorithms, we mea-
sure the average unix wallclock time of seven (memory-resident)
runs rather than spent CPU-cycles or microop execution slots.

Results
Single-threaded Cracking

At first, let us look at single threaded performance (Figure 9): we
are comparing the original cracking implementation to the single-
threaded predicated (in register as well as cache) and the vectorized
version. For reference, we also include the costs for the (paral-
lel & predicated) scan which is (roughly) memory access bound
in most cases (large intermediates lead to expensive swapping on

5 Available for download at
http://www.cwi.nl/~holger/cracking/sortvsscan

SIncluding virtual cores (Hyperthreading)

Wallclock time in s

Wallclock time in s

Wallclock time in s

Wallclock time in s

@ Original A Partition & Merge

Parallel

Scanning gy Vectorized p Vectorized Partition & Merge

1"
10

8.0

6.0

4.0

2.0

0.0 .
0 50 100

Qualifying Tuples/Pivot
(a) Desktop

bt
on

0.0

0 50 100

Qualifying Tuples/Pivot
(b) Workstation

5.9
5.0
4.0
2.0
1.0
0.0

0 50 100

Qualifying Tuples/Pivot
(c) Server

5.9
5.0
4.0
3.0
2.0
1.0
0.0 . 2 * * * g + g 2 * 4v

0 50 100

Qualifying Tuples/Pivot
(d) High-End Server

Figure 9: Single Threaded Performance

V Predicated in Register <« Refined Partition & Merge

Predicated

Wallclock time in s

Wallclock time in s

Wallclock time in s

Wallclock time in s

% Vectorized Refined Partition & Merge

1"
10
8.0
6.0
4.0
2.0
0.0
0 50 100
Qualifying Tuples/Pivot
(a) Desktop
152 = . - = =
14 — .
1.2
1.0
0.80
0.60
0.404
0.20
0.0
0 50 100
Qualifying Tuples/Pivot
(b) Workstation
2.6 .\-/.\I\./.-_./I\-/I\.
2.0
1.5
1.0
0.50
0.0
0 50 100
Qualifying Tuples/Pivot
(c) Server
2.6 - . - .- a
2.0
1.5
1.0
0.50
0.0 .
50 100

Qualifying Tuples/Pivot
(d) High-End Server

Figure 10: Multi Threaded Performance

5.3
5.0
» 40
£
i3
E 30
x
o
K<}
S 20
o
=
. -
oo N

Scan Vectorized SIMD Original

Figure 11: SIMD Processing Performance at 50% Selectivity

the desktop). The first observation is that (the original) Cracking
is most expensive at 50% selectivity (incidentally the most useful
case when considering the indexing aspect of Cracking). This is to
be expected since this case yields the worst branch prediction per-
formance. We observe that, at 50% selectivity, all systems benefit
significantly from predication. Beyond that, things become more
complicated. While the server and workstation systems achieve
a benefit from keeping “active” and “backup” values in the same
register, it even has a negative effect on the performance of the
desktop system (that, surprisingly, decreases with increasing selec-
tivity). While the branch-free algorithms perform better than the
original Cracking for most of the selectivity spectrum, the better
CPU performance does not outweigh the additional writes towards
the ends of the spectrum. This is a common observation with predi-
cated algorithms that stems from the better branch prediction at the
ends of the spectrum.

SIMD

One of the most interesting (and disappointing) results of our exper-
iments is the performance of the SIMD-based Cracking implemen-
tation (see Figure 11). The figure shows that the SIMD implemen-
tation performs significantly worse than the best single-threaded
implementation (Vectorized) on our workstation system. It is even
outperformed by the original Cracking implementation. While sur-
prising at first, modeling the costs of this implementation provides
a satisfying explanation: since an SIMD-word is only flushed to
the output when it is completely filled with qualifying values, it
(usually) takes multiple gathers to process one SIMD-word. Since
every pointer has a certain probability to read a qualifying value,
filling the SIMD-word can be modeled as a binomial process. The
average number of gathers per flush can be derived from this model
using stochastic analysis (we omit the details for lack of space). For
a word-length of 8 values and a pivot in the middle of the range, it
takes around 4.42 gathers to fill a word. Given that each gather
costs 6 cycles (on Nehalem), it takes, on average, more than three
cycles per value to only gather the values. Adding the costs for
cursor advancing and predicate evaluation, the costs of the SIMD-
implementation are prohibitively high.

Multi-threaded

The results of our multi-threaded experiments are displayed in Fig-
ure 10. To accommodate to the varying number of cores in our
experimentation platforms, we set the degree of parallelism to the
number of (virtual) cores in each machine (see Table 1). For ref-
erence, we include the best single-threaded implementation (Vec-
torized) in the chart. We observe a significant speedup in almost
all cases. Naturally, the Refined Partition & Merge implementa-
tion performs better than its plain counterpart. In addition, both
implementations achieve a performance improvement if combined

with vectorization. This effect is, however less pronounced on the
highly parallel server systems. On the 96-core High-End Server
system it is virtually non-existent. In general, we found the Vector-
ized Refined Partition & Merge implementation the fastest of our
implementation across all parameters. In fact, it even outperforms
(parallel & predicated) scanning in some cases: the in-place nature
of Cracking yields fewer cache-line fill misses than the out-of-place
scan and gives it a (slight) performance edge.

7. CONCLUSION

CPU-efficient implementation of even simple algorithms is hard:
while common knowledge in many fields of computer science, this
insight is still not properly appreciated in the field of data man-
agement. In this paper, we conducted an in-depth study of such
a supposedly simple algorithm: pivoted partitioning. We demon-
strated that, in its naive implementation, it is not an I/O bound al-
gorithm. Starting from this understanding, we systematically ana-
lyzed and addressed the dominant cost factors using state-of-the-art
techniques. The result is an implementation that rivals and some-
times even outperforms a parallelized scan on a variety of systems.
In that, it is up to 25 times faster than the initial implementation.

References

[1] Intel 64 and IA-32 Architectures Optimization Reference Manual. Ap-
pendix B: Using Performance Monitoring Events. Intel Corporation,
June 2013.

[2] S. Agrawal, S. Chaudhuri, L. Koll4r, A. P. Marathe, V. R. Narasayya,

and M. Syamala. Database Tuning Advisor for Microsoft SQL Server

2005. In VLDB, pages 1110-1121, 2004.

A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a

Modern Processor: Where Does Time Go? In VLDB, pages 266-277,

1999.

C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu. Multi-Core,

Main-Memory Joins: Sort vs. Hash Revisited. PVLDB, 7(1):85-96,

2013.

[5] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR, pages 225-237, 2005.

[6] N. Bruno and S. Chaudhuri. An Online Approach to Physical Design

Tuning. In ICDE, pages 826-835, 2007.

J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K.

Chen, A. Baransi, S. Kumar, and P. Dubey. Efficient Implemen-

tation of Sorting on Multi-Core SIMD CPU Architecture. PVLDB,

1(2):1313-1324, 2008.

J. Cieslewicz and K. A. Ross. Adaptive Aggregation on Chip Multi-

processors. In VLDB, pages 339-350, 2007.

B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin.

Automatic SQL Tuning in Oracle 10g. In VLDB, pages 1098-1109,

2004.

[10] G. Graefe, F. Halim, S. Idreos, H. A. Kuno, and S. Manegold. Concur-
rency Control for Adaptive Indexing. PVLDB, 5(7):656-667, 2012.

[11] G. Graefe, F. Halim, S. Idreos, H. A. Kuno, S. Manegold, and
B. Seeger. Transactional Support for Adaptive Indexing. VLDBJ,
23(2):303-328, 2014.

[12] G. Graefe, S. Idreos, H. A. Kuno, and S. Manegold. Benchmarking
Adaptive Indexing. In TPCTC, pages 169—-184, 2010.

[13] G. Graefe and H. Kuno. Adaptive Indexing for Relational Keys. In
ICDE Workshops, pages 69-74, 2010.

[14] G. Graefe and H. A. Kuno. Self-Selecting, Self-Tuning, Incrementally
Optimized Indexes. In EDBT, pages 371-381, 2010.

[15] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic
Database Cracking: Towards Robust Adaptive Indexing in Main-
Memory Column-Stores. PVLDB, 5(6):502-513, 2012.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quan-
titative Approach. Morgan Kaufmann, 5th edition, 2012.

[17] C. A.R. Hoare. Algorithm 64: Quicksort. CACM, 4(7), 1961.

[3

—

[4

=

[7

—

[8

=

[9

—

[18]
[19]
[20]
[21]

[22]

[23]

[24]

S. Idreos. Database Cracking: Towards Auto-tuning Database Ker-
nels. PhD thesis, CWI, June 2010.

S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In
CIDR, pages 6878, 2007.

S. Idreos, M. L. Kersten, and S. Manegold. Updating a Cracked
Database. In SIGMOD, pages 413424, 2007.

S. Idreos, M. L. Kersten, and S. Manegold. Self-Organizing Tuple
Reconstruction in Column-Stores. In SIGMOD, pages 297-308, 2009.
S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging What’s
Cracked, Cracking What’s Merged: Adaptive Indexing in Main-
Memory Column-Stores. PVLDB, 4(9):585-597, 2011.

M. Johnson. Superscalar Microprocessor Design. Prentice Hall,
1991.

C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D.
Blas, V. W. Lee, N. Satish, and P. Dubey. Sort vs. Hash Revisited:
Fast Join Implementation on Modern Multi-Core CPUs. PVLDB,
2(2):1378-1389, 2009.

[25]

[26]

(271
[28]
[29]
[30]

[31]

M. Liihring, K.-U. Sattler, K. Schmidt, and E. Schallehn. Autonomous
Management of Soft Indexes. In SMDB, pages 450-458, 2007.

S. Richter, J.-A. Quiané-Ruiz, S. Schuh, and J. Dittrich. Towards zero-
overhead static and adaptive indexing in hadoop. VLDBJ, 23(3):469—
494, 2014.

K. A. Ross. Selection Conditions in Main Memory. TODS, pages
132-161, 2004.

K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis. COLT: Con-
tinuous On-Line Tuning. In SIGMOD, pages 793-795, 2006.

F. M. Schuhknecht, A. Jindal, and J. Dittrich. The Uncracked Pieces
in Database Cracking. PVLDB, 7(2):97-108, 2013.

J. Zhou and K. A. Ross. Implementing Database Operations Using
SIMD Instructions. In SIGMOD, pages 145-156, 2002.

D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 Design Advisor: Integrated
Automatic Physical Database Design. In VLDB, pages 1087-1097,
2004.

