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ABSTRACT
Great database systems performance relies heavily on index tun-
ing, i.e., creating and utilizing the best indices depending on the
workload. However, the complexity of the index tuning process
has dramatically increased in recent years due to ad-hoc workloads
and shortage of time and system resources to invest in tuning.

This paper introduces holistic indexing, a new approach to au-
tomated index tuning in dynamic environments. Holistic indexing
requires zero set-up and tuning effort, relying on adaptive index
creation as a side-effect of query processing. Indices are created
incrementally and partially; they are continuously refined as we
process more and more queries. Holistic indexing takes the state-
of-the-art adaptive indexing ideas a big step further by introducing
the notion of a system which never stops refining the index space,
taking educated decisions about which index we should incremen-
tally refine next based on continuous knowledge acquisition about
the running workload and resource utilization. When the system
detects idle CPU cycles, it utilizes those extra cycles by refining
the adaptive indices which are most likely to bring a benefit for
future queries. Such idle CPU cycles occur when the system can-
not exploit all available cores up to 100%, i.e., either because the
workload is not enough to saturate the CPUs or because the current
tasks performed for query processing are not easy to parallelize to
the point where all available CPU power is exploited.

In this paper, we present the design of holistic indexing for column-
oriented database architectures and we discuss a detailed analysis
against parallel versions of state-of-the-art indexing and adaptive
indexing approaches. Holistic indexing is implemented in an open-
source column-store DBMS. Our detailed experiments on both syn-
thetic and standard benchmarks (TPC-H) and workloads (SkyServer)
demonstrate that holistic indexing brings significant performance
gains by being able to continuously refine the physical design in
parallel to query processing, exploiting any idle CPU resources.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design
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1. INTRODUCTION
The big data era is causing the research community to rethink

fundamental issues in the design of database systems towards more
usable systems [32] that can access data better and faster [36, 37,
39, 40], that can better exploit modern hardware and opportunities
for massive parallelization [15] that can support efficient process-
ing of OLTP and/or OLAP queries [6, 34, 35, 41].

The Physical Design Problem. Physical design, and in partic-
ular proper index selection, is a predominant factor for the per-
formance of database systems and has only become more crucial
in the big data era. With new dynamic and exploratory environ-
ments, physical design becomes especially hard given the instabil-
ity of workloads and the continuous stream of big data; a single
physical design choice is not necessarily correct or useful for long
stretches of time, while at the same time workload knowledge is
scarce given the exploratory user behavior.

State-of-the-Art. In database applications, where “the future
is known”, physical design is assigned to database administrators
who may also be assisted by auto-tuning tools [5, 14, 50]. Still
though, a significant amount of human intervention is necessary
and everything needs to happen offline. Thus, offline indexing can
be applied with good results only on applications where there is
enough workload knowledge and idle time to prepare the physical
design appropriately before queries arrive.

Unfortunately, for many modern applications “the future is un-
known”, e.g., in scientific databases, social networks, web logs, etc.
In particular, the query processing patterns follow an exploratory
behavior, which changes so arbitrarily that it cannot be predicted.
Such environments cannot be handled by offline indexing. Online
indexing [10, 47] and adaptive indexing [27] are two approaches
to automatic physical design in such dynamic environments, but
none of them in isolation handles the problem sufficiently. Online
indexing periodically refines the physical design but it may neg-
atively affect running queries every time it needs to use resources
for reconsidering the physical design and it may not be quick to fol-
low the workload changes as it reacts only periodically. Adaptive
indexing does not have this problem as it introduces continuous,
incremental and partial index refinement but it adjusts the physical
design only during query processing based on queries.

Always Indexing. In this paper, we make the observation that in
real systems there are plenty of resources that remain under-utilized
and we propose to exploit those resources to be able to better ad-
dress dynamic and ad-hoc environments. In particular, we focus on
exploiting CPU cycles to the maximum by continuously detecting
idle CPU cycles and using them to refine the physical design (in
parallel with query processing). Such idle CPU cycles occur when
the system does not exploit all available cores up to 100%. We dis-
tinguish between “idle time” as in “there is no user-driven work-
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partial low dynamic

Table 1: Qualitative difference among offline, online, adaptive and holistic indexing.

load at all and the entire CPU (all its hardware contexts) is idle
(except possible occasional operating system background activity)”
and “idle CPU resources” as in “the active user-driven workload
does / can not use all physically available CPU hardware contexts.”
Intuitively, there are two options when resources are under-utilized
but still there are active queries in the system. The first option is to
introduce more parallel query processing algorithms to maximize
utilization for the existing workload. The second one is to exploit
the extra resources towards a different goal (extra indexing actions
in our case). We investigate and compare both directions.

Holistic Indexing. In this paper, we introduce a new indexing
approach, called holistic indexing. Holistic indexing addresses the
automatic physical design problem in modern applications with dy-
namic and exploratory workloads. It continuously monitors the
workload and the CPU utilization; when idle CPU cycles are de-
tected, holistic indexing exploits them in order to partially and in-
crementally adjust the physical design based on the collected sta-
tistical information. Each index refinement step may take only a
few microseconds to complete and the system will typically per-
form several such steps in one go depending on available system
resources. Everything happens in parallel to query processing but
without disturbing running queries. The net effect is that holistic in-
dexing refines the physical design, improving performance and ro-
bustness by enabling better data access patterns for future queries.
Table 1 summarizes the qualitative difference between holistic in-
dexing and current state-of-the-art indexing approaches. Compared
to past approaches, holistic indexing manages to minimize both ini-
tialization and maintenance costs, as it relies on partial indexing,
and to exploit all possible CPU resources in order to provide a more
complete physical design.

Contributions. Our contributions are as follows:
• We introduce the idea of exploiting idle CPU resources to-

wards continuously adapting the physical design to ad-hoc
and dynamic workloads.

• We discuss in detail the design of holistic indexing on top
of modern column-store architectures, i.e., how to detect and
exploit idle CPU resources during query processing.

• We implemented holistic indexing in an open-source column-
store, MonetDB [26, 52]. Through a detailed experimen-
tal analysis both with microbenchmarks and with TPC-H we
demonstrate that we can exploit idle CPU resources to pre-
pare the physical design better, leading to significant im-
provements over past indexing approaches in dynamic en-
vironments.

Paper Structure. The rest of the paper is structured as follows:
Section 2 provides an overview of related work. In Section 3, we
shortly recap the basics of column-store architectures and the basics
of adaptive indexing. Then, Section 4 introduces holistic indexing,
while Section 5 presents a detailed experimental analysis. Finally,
Section 6 discusses future work and concludes the paper.

2. RELATED WORK
In this section we briefly discuss previous approaches to auto-

mated physical design, i.e., offline, online and adaptive indexing.

Offline Indexing. Offline indexing is the earliest approach on
self-tuning database systems. Nowadays, all major database prod-
ucts offer auto-tuning tools [5, 14, 50] to automate the database
physical design. Auto-tuning tools mainly rely on a “what-if anal-
ysis” [12] and close interaction with the optimizer [11] to decide
which indices are potentially more useful for a given workload.

Offline indexing requires heavy involvement of a database ad-
ministrator (DBA). Specifically, a DBA invokes the tool and pro-
vides its input, i.e., a representative workload. The tool analyzes the
given workload and recommends an appropriate physical design.
However, the DBA is the one that decides which of the changes
in the physical design should be applied. The main limitation of
offline indexing appears when the workload cannot be predicted
and/or there is not enough idle time to invest in the offline analysis
and the physical design implementation.

Online Indexing. Online indexing addresses the limitation of
offline indexing. Instead of making all decisions a priori, the sys-
tem continuously monitors the workload and the physical design
is periodically reevaluated. System COLT [47] was one of the
first online indexing approaches. COLT continuously monitors the
workload and periodically in specific epochs, i.e., every N queries,
it reconsiders the physical design. The recommended physical de-
sign might demand creation of new indices or dropping of old ones.
COLT requires many calls to the optimizer to obtain cost estima-
tions. A “lighter” approach, i.e., requiring less calls to the opti-
mizer, was proposed later [10]. Soft indices [43] extended the pre-
vious online approaches by building full indices on-the-fly concur-
rently with queries on the same data, sharing the scan operator.

The main limitation of online indexing is that reorganization of
the physical design can be a costly action that a) requires a signifi-
cant amount of time to complete and b) requires a lot of resources.
This means that online indexing is appropriate mainly for moder-
ately dynamic workloads where the query patterns do not change
very frequently. Otherwise, it may be that by the time we finish
adapting the physical design, the workload has changed again lead-
ing to a suboptimal performance.

Adaptive Indexing. Adaptive indexing is the latest and the most
lightweight approach in self-tuning databases. Adaptive indexing
addresses the limitations of offline and online indexing for dynamic
workloads; it instantly adjusts to workload changes by building or
refining indices partially and incrementally as part of query pro-
cessing. By reacting to every single query with lightweight actions,
adaptive indexing manages to instantly adapt to a changing work-
load. As more queries arrive, the more the indices are refined and
the more performance improves. Adaptive indexing has been stud-
ied in the context of main-memory column-stores [27, 48], Hadoop
[46] as well as for improving more traditional disk-based settings
[20]. It has been shown to work for many core database architecture
issues such as updates [28], multi-attribute queries [29], concur-
rency control [8, 16, 17], partition-merge-like logic [20, 31]. In ad-
dition, [18] shows how to benchmark adaptive indexing techniques,
while stochastic database cracking [21] shows how to be robust on
various workloads and [19] shows how adaptive indexing can apply
to key columns. Finally, recent work on parallel adaptive indexing
studies CPU-efficient implementations and proposes algorithms to



exploit multi-cores [8, 44]. Recently, adaptive indexing concepts
have been extended to provide adaptive indexes for time series data
[51] as well as using incoming queries for more broad storage lay-
out decisions, i.e., reorganizing base data (columns/rows) accord-
ing to incoming query requests [7], or even about which data should
be loaded [25]. In addition, adaptive indexing ideas have been used
to design new generation data exploration tools such as touch-based
data systems [30, 42].

The main limitation of adaptive indexing is that it works only
during query processing. In this way, the only opportunity to im-
prove the physical design is only when queries arrive.

Database Systems for the Multi-core Era. Modern hardware
offers opportunities for high parallelism; a single machine may be
equipped with chip multiprocessors, which contain multiple cores
with support for multiple context threads. Recent research focuses
on exploiting parallelism opportunities by a) processing multiple
queries concurrently, and b) by parallelizing tasks in the critical
path during query processing [22, 23, 24, 33]. Sorting is one of
the most important database tasks (and a core component of adap-
tive indexing in column-stores) that can be highly-parallelized us-
ing modern hardware advances [9, 38, 45, 49].

Holistic Indexing. Contrary to past indexing approaches, holis-
tic indexing results in an always-on self-tuning database system.
Holistic indexing is inspired by all past approaches and it main-
tains the design points which are useful for dynamic workloads.
For example, it uses adaptive indices as in adaptive indexing and it
monitors the workload as in online indexing. Contrary to other ap-
proaches though, holistic indexing is always active, always trying
to improve the physical design with every opportunity that occurs
when it detects under-utilized CPU cores. Compared to recent re-
search that tries to adapt modern database systems to the multi-core
era by parallelizing core database operators, holistic indexing pro-
vides an additional way to exploit those resources when either the
workload is not enough to saturate the CPUs or when simply we
cannot fully parallelize all database actions.

3. BACKGROUND
Holistic indexing is designed for column-oriented database ar-

chitectures and it exploits the main design points of adaptive index-
ing. In this section, we provide the necessary technical background
about column-store database architectures [4] and we discuss the
basics of adaptive indexing.

3.1 Column-oriented DBMS
Column-oriented DBMS are inspired by the Decomposition Stor-

age Model [13]. Data is stored one column at a time instead of one
row at a time as in traditional row-oriented DBMS. Every relational
table is vertically fragmented into a set of columns (one for each
attribute). Each value of a single tuple is stored in the same po-
sition across all columns. Full vertical fragmentation significantly
reduces the I/O and memory footprint of queries that require only
part of a table’s attributes; only the attributes that are relevant to a
query are loaded from disk to memory. Moreover, the alignment
across all base columns allows for efficient late tuple reconstruc-
tion with tuple order-preserving operators. For instance, assume
the following query.

select B from R where A>10 and A<20

A column-store DBMS performs two main steps to answer this
query. First, a select operator searches column A for attribute val-
ues between 10 and 20. The intermediate result is a new column
which contains the positions of the qualifying attribute values in
the relation. Second, a project operator fetches the values residing

  

12

3

5

9

15

22

7

26

4

2

24

11

16

Initial state

A

4

3

5

9

2

7

12

11

15

22

24

26

16

4

3

2

9

5

7

12

11

15

16

24

26

22

Q1: select A from R where 10≤A<15  Q2: select A from R where 5≤A<17

A A

Position 1

value <10

Position 7

value ≥10

Position 9

value >15

Piece 1

Piece 2

Piece 3

Cracker Index Cracker Index

Position 4

value ≥5

Position 7

value >10

Position 9

value <17

Position 11

value ≥17

Piece 1

Piece 2

Piece 3

Piece 4

Piece 5

Position 1

value <5

Figure 1: Adaptive indexing.

in attribute B at the positions specified by the intermediate result.
Thus, column-oriented architectures allow for independent manip-
ulation of the columns that are relevant to the query, which allows
for operator implementations that exploit CPU and cache friendly
patterns with tight for loops in an array-processing style.

With no indexing support, a column-store select operator has to
completely scan a column in order to identify the qualifying tuples.
The cost of scanning a column with N tuples is expressed in data
accesses, i.e., how many of the column values are “touched”, and
thus it is O(N). The search for the qualifying tuples can be accel-
erated by orders of magnitude with a full indexing strategy. That
is, we can first sort a column and then we may use binary search
actions to find the qualifying tuples. The average cost of a binary
search is O(log(N)), while the average cost of sorting an entire
column in memory, e.g., using quicksort, is O(N ⇤ log(N)).

3.2 Adaptive Indexing
The cost of the sorting phase is a considerable overhead. Adap-

tive indexing is a significantly more lightweight approach that spreads
the sorting cost across many queries in the workload. This helps
when there is not enough idle time to create the full index upfront
and the system has to answer queries. In addition, it is helpful
when we do not know which columns are relevant for the workload
a priori so we can sort them. This is especially important as to-
day, as applications and schemas get more complex, we may have
hundreds of columns in a database.

In adaptive indexing, the first time an attribute A is required by
a query, a copy of the base column A is created, called the cracker
column ACRK of A. Each selection operator on A triggers the phys-
ical reorganization of ACRK based on the requested range of the
query. The query predicates are used as a hint on how the data
should be stored, i.e., values that are less than the lower bound
are moved before the lower bound while values that are greater
than the upper bound are moved after the upper bound in the re-
spective column. Thus, the column is partitioned on-the-fly, i.e.,
during query processing, based on the query predicates. The par-
titioning information for each cracker column is maintained in an
AVL-tree, called cracker index of A. Index refinement is integrated
with the query processing, since it is part of the select operator. Fu-
ture queries on column A search the cracker index for the partition
where the requested range falls. If the requested values already ex-
ist in the index, i.e., if past queries have cracked on exactly those
ranges, then the select operator can return the result immediately.
Otherwise, the select operator refines on-the-fly the column further,
i.e., only the partitions/pieces of the column where the predicates
fall will be reorganized.

For instance, Figure 1 shows an example of two queries crack-
ing a single column, one after the other. The first query creates
three partitions, while the second query refines only the first par-



tition, where its lower bound falls, and the third partition, where
its upper bound falls. The more queries arrive, the more parti-
tions/pieces are created. Thus, future queries have to refine smaller
and smaller pieces, which results in a performance improvement as
smaller pieces means that queries need to access less data.

The cost of the first cracking query in terms of data accesses is
O(N), since it has to analyze every tuple in the column. Assuming
for simplicity that every query cracks a single piece in half, then
the second query will touch N/2 tuples and so on. Thus, the cost of
the i-th query becomes N/2 f loor(log2(i)). The i-th query pays also
the cost of searching the values in the cracker index. This cost is at
most log(i), i.e., the depth of the AVL-tree.

The overall cost depends on the workload. However, the ten-
dency is always the same; as more queries arrive, more partitions
are created and, and each query has to touch less and less data dur-
ing the select operator. In this way, adaptive indexing provides a
lightweight alternative to full indexing; it can instantly adjust to a
workload change and keep improving as the workload patterns per-
sist, eventually reaching similar performance to full indexing but
without requiring big initialization costs and workload knowledge.

Holistic Indexing vs. Adaptive Indexing. Holistic indexing
maintains the design points of adaptive indexing, i.e., lightweight
indexing with partial and incremental indices integrated with query
processing. It extends adaptive indexing in that with holistic in-
dexing the adaptive indices are continuously refined and improved;
holistic indexing is always active; it continuously monitors the work-
load and the CPU utilization and reorganizes the physical design
concurrently with query processing as soon as there are under-
utilized CPU resources.

4. HOLISTIC INDEXING
In this section we discuss the fundamentals of holistic indexing.

We designed holistic indexing on top of column-store architectures
inspired by their flexibility on manipulating some attributes with-
out affecting the rest. During query processing indices are built
and optimized incrementally by adapting to query predicates, as in
adaptive indexing. However, in contrast to adaptive indexing, index
refinement actions are not triggered only as a side-effect of query
processing; in holistic indexing incremental index optimization ac-
tions take place continuously in order to exploit under-utilized CPU
cores. Thus, concurrently with user queries, system queries also re-
fine the index space. Holistic indexing monitors the workload and
CPU resources utilization and every time it detects that the system
is under-utilized it exploits statistical information to decide which
indices to refine and by how much.

Thus, with holistic indexing we achieve an always active self-
organizing DBMS by continuously adjusting the physical design to
workload demands.

Problem Definition: Given a set of adaptive indices, statistical
information about the past workload, storage constraints and the
CPU utilization, continuously select indices from the index space
and incrementally refine them, while the materialized index space
size does not exceed the storage budget.

In the rest of this section, we discuss in detail how we fit holistic
indexing in a modern DBMS architecture.

4.1 Preliminary Definitions
First, we give a series of definitions.
Workload. A workload W consists of a sequence of user queries,

inserts and deletes. Updates are translated into a deletion that is
followed by an insertion.

CPU Utilization. CPU utilization in a time interval dt describes
how much of the available CPU power is used in dt. Specifically, it
expresses the percentage of total CPU time, i.e., the amount of time
for which the CPU is used for processing user or kernel processes
instead of being idle. CPU utilization is calculated using (operating
system) kernel statistics.

Configuration. A configuration is defined as a set of adaptive in-
dices that can be used in the physical design. There are three kinds
of configurations. The actual configuration, Cactual , contains in-
dices on attributes that have already been accessed by user queries
in the workload. Indices are inserted in Cactual when they are cre-
ated during query processing. For instance, assume a query Q en-
ters the system and contains a selection on an attribute A. If the
adaptive index on A does not exist, it is created on-the-fly and it is
inserted in Cactual .

Besides Cactual , holistic indexing also maintains the potential
configuration. Cpotential , which contains indices on attributes that
have not been queried yet. Indices are inserted in Cpotential either
automatically by the system or manually by the user. Finally, the
optimal configuration, Coptimal , contains indices that have reached
the optimal status (the next paragraph describes when an index is
considered optimal). The union of Cactual and Cpotential constitutes
the index space IS, i.e., the indices which are candidates for incre-
mental optimization when the system is under-utilized. Later, in
Section 4.2, we describe how the system is educated to pick an in-
dex from IS. Indices from Coptimal are not considered for further
refinement during the physical design reorganization.

Optimal Index. Holistic indexing exploits adaptive indices. As
seen in Section 3.2, an adaptive index is refined during query pro-
cessing by physically reorganizing pieces of the cracker column
based on query predicates. As more queries arrive, more pieces are
created, and thus, the pieces become smaller. We have found that
when the size of the pieces becomes equal to L1 cache size (|L1|),
further refinements are not necessary; a smaller size increases ad-
ministration costs to maintain the extra pieces and it does not bring
any significant extra benefit as scanning inside L1 is fast anyway
(no cache misses). Pieces of size smaller than L1 cache can either
be sorted or queries simply need to scan them (a range select oper-
ator has to scan at most two L1 pieces). An index I on an attribute
A is considered optimal (Iopt ), when the average size of pieces (|p|)
in ACRK is equal to the size of L1 cache. Equation (1) describes the
distance between I and Iopt .

d(I, Iopt) = |p|� |L1|=
NA
pA

� |L1| (1)

NA is the total number of tuples in ACRK while pA is the total
number of pieces in ACRK . This information is readily available
and thus we can easily calculate the average piece size in a cracker
column and in turn we can calculate the distance of the respective
cracker index from its optimal status.

Statistical Information. During query processing holistic in-
dexing continuously monitors the workload and the CPU utiliza-
tion. For each column in the schema it collects information regard-
ing how many times it has been accessed by user queries, how many
pieces the relevant cracker column contains, how many queries did
not need to further refine the index because there was an exact
hit. Besides the statistical information about the workload, kernel
statistics are used in order to monitor the CPU utilization.

4.2 System Design
Holistic indexing is always active. It continuously monitors the

workload and the CPU utilization. When under-utilized CPU cores
are detected, holistic indexing exploits them in order to adjust the
physical design based on the collected statistical information. The



system performs several index refinement steps simultaneously de-
pending on available CPU resources. Everything happens in paral-
lel to query processing, but without disturbing running queries.

We discuss in detail the continuous tuning process and how to
exploit under-utilized CPU cycles. We also discuss how existing
adaptive indexing solutions on core database architectures issues-
such as updates and concurrency control can be directly adapted to
work with holistic indexing.

Statistics per Column/Index. Statistics per column are col-
lected during query processing. This is the job of the select operator
as it is within the select operator that all (user query) adaptive in-
dexing actions take place. Every time an attribute is accessed for a
selection of a user query, the select operator updates a data struc-
ture, which contains all statistics for the respective index. Given
that the select operator performs adaptive indexing actions anyway,
it already has access to critical information such as how many new
pieces were created during new cracking actions for this query,
whether the select was an exact match, etc. All information is
stored in a heap structure (one node per index) which allows us
to easily put new indices in the configuration or drop old ones. The
structure is protected with read/write latches as multiple queries or
holistic workers (discussed later on) may be cracking in parallel.

Tuning Cycle. At all times there is an active holistic indexing
thread which runs in parallel to user queries. The responsibility of
the holistic indexing thread is to monitor the CPU utilization and to
activate holistic worker threads to perform auxiliary index refine-
ment actions whenever idle CPU cycles are detected. The tuning
process is shown in Figure 2. The holistic indexing thread contin-
uously monitors the CPU load at intervals of 1 second at a time.
In case holistic worker threads are activated, the holistic indexing
thread waits for all worker threads to finish and measures the CPU
utilization within the next 1 second. In our analysis, we found that
1 second is the time limit that gives proper kernel statistics. When n
idle CPU cores are detected, n holistic worker threads are activated.
Each worker thread executes an instance of the IdleFunction, which
picks an index from the Index Space IS and performs x partial in-
dex refinement actions on it. Every time an index is refined, the
respective statistics, e.g., distance from the optimal index, are up-
dated. When an index reaches the optimal status, it is moved into
the optimal configuration Coptimal .

A side-effect of the tuning process is that some of the holistic
worker threads might remain idle while the holistic indexing thread
waits for all workers to finish. However, as we show later in Sec-
tion 5.1 (Figure 6(d)), this happens only for very short periods of
time and as the system adapts to the workload this phenomenon
disappears (as the pieces queried in the adaptive indices become
smaller and smaller the holistic indexing workers end up doing
tasks of similar weight as none is going to touch a very big piece).

Index Refinement. Every time a worker thread wakes up, it
performs x index refinements on a single column. x is a tuning pa-
rameter. In our analysis in Section 5.5 (Figure 15) we found that
a good value for our hardware set-up is x = 16. The index refine-
ments are performed by picking x random values in the domain of
the respective attribute and cracking the column based on these val-
ues. In this way, each time a worker thread cracks a single piece of
a column it splits this piece into two new pieces based on the pivot.

There are numerous choices on how to choose a pivot. We found
that picking a random pivot is the most cost efficient choice. Other
options include to crack the biggest piece of the column, i.e., with
the rationale that this takes more work out of future queries. An-
other option is to crack the smallest piece, i.e., with the rationale
that this piece is small because it is hot (because many queries ac-
cess it for cracking). However, such options are hard to achieve
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Figure 2: Tuning actions.

in a lightweight way as we need to maintain a structure such as a
priority queue to know which piece is the biggest or smallest every
time. Since every cracking action costs a few microseconds or mil-
liseconds it is not worth the extra storage and CPU cost to maintain
auxiliary structures. Random pivots converge quickly to cracking
the whole domain, providing a column which is balanced in terms
of which pieces are cracked and requiring no extra costs in deciding
which pivot to choose.

Index Decision Strategies. Another decision we have to make
is which index to refine out of the pool of candidate indices. Here,
we describe four different strategies we can follow in order to pick
an index from the index space. The notion behind the first three
strategies is that, since the only information we have is the past
workload, we can exploit this information in order to prepare the
physical design for a similar future workload. On the contrary, the
fourth strategy makes random choices.

For all strategies, a weight WI is assigned to each index I in the
index space. When an index I is added in the candidate indices,
its weight is initialized to the distance between I and Iopt , which
is given by Equation (1). For each index I, initially, there is only
one partition (pI = 1) in I, i.e., the entire column. Thus, the initial
weight WIinit is equal to NI �L1s , where NI is the cardinality of the
respective attribute (with type T ) and L1s is the number of elements
of type T that can fit into L1 cache. The weight is used as a priority
number in the first three strategies. The index with the highest pri-
ority, i.e., the maximum weight, in Cactual is refined first. When WI
becomes equal to zero, I is transferred from Cactual to Coptimal and
it is not considered for further refinement in the future. If Cactual
is empty, an index is randomly picked from Cpotential . The weight
of each index is constantly updated after every index refinement
regardless of whether it is caused by a user query or by holistic
indexing. Below we describe the four strategies.

• W1: WI = dI = d(I,Iopt). Using this strategy, we give a pri-
ority to indices with large partitions.

• W2: WI = fI ⇤dI . Priority is given to indices that have large
partitions and at the same time are accessed frequently in the
workload. fI is the number of user queries that access I.

• W3: WI = ( fI � fIh) ⇤ dI . In this strategy we try to identify
indices that are accessed frequently in the workload and at
the same time have large partitions, because they have a high
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hit rate. These indices have a smaller priority compared to
indices with large partitions that are accessed less frequently.
fI is the number of user queries that access I, while fIh is the
number of user queries that do not trigger a refinement of I
because the requested value bound already exists in I.

• W4: Make a random choice.
Overall, our analysis, which is described later in Section 5.4

(Figure 13), with numerous workloads showed that even though
small improvements can be achieved when picking the perfect strat-
egy for each workload, the random strategy gives a good and robust
overall solution that is always close to the best for all workloads.

Concurrency Control. An index refinement due to holistic in-
dexing happens in parallel with user queries. Since user queries
may also cause refinement of adaptive indices, we need to prop-
erly control these changes. In addition, as more than one holistic
thread may be active at any time, they may be trying to refine the
same index. The study of concurrency control for adaptive index-
ing [16, 17] showed that it is possible to allow multiple concurrent
index refinements in adaptive indices via lightweight concurrency
control, i.e., relying only on latches of individual pieces in an adap-
tive index. The point is that an index refinement only changes the
structure of the index and not its contents (contrary to an actual
update). In this case, an index refinement only rearranges values
in a single piece of a column at a time. Thus it is sufficient to al-
low other queries to work on different pieces in parallel by taking
read/write latches on individual pieces, called piece latches in [16,
17]. We exploit these techniques here in order to allow user queries
and holistic workers to work concurrently over a single column,
but we also identify extra opportunities to increase parallelism for
holistic workers.

Figure 3 shows an example of an adaptive index where two queries
are actively cracking it. Each query is interested in its own value
range and needs to crack one piece, i.e., at the value of its selection.
The idea is that all other pieces of the column are available for in-
dex refinement by holistic worker threads. One direction would be
that each holistic worker decides which piece of an index to re-
fine by picking from a list of pieces that currently have no locks.
However, such information is expensive to maintain similarly to
our discussion in the “Index Refinement” paragraph. Thus, holistic
workers make random choices regarding which value to use as pivot
and thus which piece to crack. However, when a holistic worker re-
quests a write latch to crack a piece and it happens that the piece
is locked at the moment, then if the latch is not given immediately,
the worker picks another random pivot and repeats the procedure

y2 y1y4 y3x3x1 x4x2

(a)

(b)

Figure 4: Refined Partition & Merge (multi-threaded) [44].

copy

partition

copy

partition

Figure 5: Vectorized Cracking [44].

until it finds a free piece to crack. In contrast, user queries need to
always block in such cases and wait for the piece to be unlocked.
For instance, in Figure 3(d) the holistic worker thread tries to lock
piece 2.1, which is already locked by Q4. Instead of waiting for
the lock to be released, the worker chooses another pivot. The new
pivot falls in piece 3.2, which is not locked and it is reorganized
finally by the worker (Figure 3(e)). As we process more queries
and as we perform more holistic indexing, the number of pieces in
an index grows; as a side-effect the waiting time for taking a latch
decreases as there are more candidate pieces to pick from.

Updates. Updates for adaptive indexing have been studied in
[29]. The design in [29] is that updates remain as pending updates
and are merged during query processing, i.e., if a query requests a
value range that contains one or more pending updates, then only
those updates are merged on-the-fly and without destroying any of
the information on the adaptive index. Each query needs to lock at
most one column piece at a time for cracking and can update this
piece at the same time if pending updates for this piece exist [16,
17]. Multiple queries may work in parallel updating and cracking
separate pieces (value ranges) of the same column.

The difference here is that with holistic indexing, holistic work-
ers not only perform auxiliary index refinement actions but also
merge pending updates. That is, if a holistic worker picks a pivot
which falls within a piece of the respective column and the value
range, for which this piece holds values, has pending updates, then
all those pending updates are merged by the holistic worker. In this
way, holistic worker threads not only refine the adaptive indices in
the background but also bring them more up to date which removes
further load from future queries.

Storage Constraints. Holistic indexing works within a limited
storage budget. Adaptive indices may be dropped or recreated at
any time. They consist auxiliary information and thus dropping an
index does not lead to any loss of data. In case the storage budget
does not allow adding a new index triggered by a user query, then
indices are removed with a least frequently used (LFU) policy from
the index space at an index-level granularity or at a fine-grained
granularity that allows for creating and dropping individual ranges
dynamically, as partial cracking suggested in [29].

Multi-core Adaptive Indexing. The goal of holistic indexing is
to improve the physical design by fully utilizing the available CPU
resources. An alternative approach to achieve maximum CPU uti-
lization is to parallelize the index refinement actions triggered by
user queries. This problem was studied in [44], which introduced a
multi-core, CPU efficient cracking algorithm shown in Figure 4. In
this algorithm, the to-be-cracked piece is partitioned initially into
as many slices as the number of threads, e.g., n (Figure 4(a)). The
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Figure 6: Improving performance with holistic indexing.

center slice is contiguous, while the remaining n� 1 slices con-
sist of two disjoint halves, each, that are arranged concentrically
around the center slice (xi and yi indicate the first and the last el-
ement of piece i respectively). n threads crack the n slices inde-
pendently applying a vectorized, out-of-place cracking algorithm
(Figure 5), which was proven in [44] to be the most CPU efficient
single-threaded cracking implementation reported so far. Finally,
the local data are merged into a big cracked piece (Figure 4(b)).
We found that devoting all resources to perform adaptive indexing
for user queries in parallel does not lead to the absolute best per-
formance. Specifically, we found that we can improve performance
even more by assigning part of the resources to holistic indexing. In
this way, some of the CPU resources are assigned to parallel crack-
ing for user queries but the rest of the CPU resources are distributed
across several holistic workers for additional index refinements. In
the experimental section we show why this approach is better than
assigning all available resources to user queries.

5. EXPERIMENTAL ANALYSIS
In this section, we demonstrate that holistic indexing leads to a

self-organizing always-on DBMS with substantial benefits in terms
of response time; with zero administration or set-up effort holistic
indexing improves performance adaptively by exploiting all avail-
able CPU resources to the maximum. We present a detailed exper-
imental analysis using both standard benchmarks such as TPC-H
and real-life workloads such as SkyServer as well as synthetic mi-
crobenchmarks for a fine-grained analysis.

We use a dual-socket machine equipped with two 2.00 GHz In-
tel(R) Xeon(R) CPU E5-2650 processors and with 256 GB RAM.
Each processor has 8 hyper-threading cores resulting in 32 hard-
ware threads in total. The operating system is Fedora 20 (kernel
version 3.12.10). All experiments we report are based on an im-
plementation of holistic indexing in MonetDB and assume a main-
memory environment.

5.1 Improving over State-of-the-Art Indexing
In our first experiment we demonstrate that holistic indexing

has the potential to bring substantial performance improvements
over existing state-of-the-art indexing approaches. We test holistic
indexing against parallel versions of adaptive indexing (database
cracking), offline indexing, online indexing and plain scans.

For plain scans (no indexing), we use a parallel select opera-
tor implemented in MonetDB. For offline and online indexing we
sort the columns using a highly parallel NUMA-aware sorting algo-
rithm that was introduced in [9] (m-way, 16-byte keys) and is pub-
licly available in [1]. Specifically, in offline indexing we pre-sort
all the columns before query processing, while in online indexing

we assume that after processing a few queries we understand the
workload patterns and then we sort the relevant columns. MonetDB
automatically detects that a column is sorted and can use efficient
binary search actions during select operations. For adaptive index-
ing we use the parallel vectorized database cracking algorithm that
was introduced in [44] (see Section 4.2).

Here we use a synthetic benchmark. The query workload con-
sists of 103 range select queries over a table of 10 attributes; each
query touches a single attribute (we will see more complex queries
later on). Each attribute consists of 230 uniformly distributed inte-
gers, while the value range requested by each query (and thus the
selectivity) is random. All queries are of the following form.

select A from R where A < v

The tested scenario assumes a dynamic and ad-hoc environment
with zero workload knowledge and zero idle time to pre-index the
data. Figure 6(a) shows the results. On the x-axis queries are ranked
in execution order. The y-axis represents the cumulative response
time as the query sequence evolves, i.e., each point (x,y) represents
the sum of the execution time y for the first x queries. In this way,
the graph shows how the response times evolve as we process more
and more queries.

If there is no indexing support (plain scans), the entire column is
scanned in parallel by 32 threads for every query. Because of this
stable access pattern, the cumulative response time of the query se-
quence grows linearly as every query has similar cost. With offline
indexing, on the other hand, it takes 12 seconds to completely sort
each column, assuming a priori workload knowledge. This leads to
a 120 seconds initialization overhead to sort all 10 columns. Since
there is no idle time before the first query, the sorting cost is added
to the execution time of the first query in Figure 6(a). After the
first query, all queries are answered with fast binary search actions
which results in a rather flat cumulative curve. With online index-
ing, the first 100 queries are answered without any index support
and thus the cost grows linearly. After the 100th query, assuming
enough workload knowledge has been obtained via monitoring, we
proceed to sort all 10 columns. The sorting cost is added to the
execution cost of the 101st query, since there is no idle time be-
tween the 100th and the 101st query. As with offline indexing, all
subsequent queries are answered very fast with binary search over
the sorted column. Thus, both in offline and in online indexing,
the whole query sequence is affected by the sorting costs. On the
other hand, adaptive indexing continuously improves performance
requiring no workload knowledge and without penalizing individ-
ual queries. This improvement is due to the fact that adaptive in-
dexing builds only partial indices which it incrementally refines as
queries arrive. However, there is still room for big improvements.
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Figure 7: Performance improves if we distribute the threads
equally between user queries and holistic workers.

Holistic indexing manages to further improve the performance
of the workload by about 50%. Contrary to the other indexing ap-
proaches, MonetDB with holistic indexing enabled monitors the
CPU utilization and constantly tries to maximize it. When holistic
indexing detects idle CPU resources, it triggers index refinement
actions on existing adaptive indices. In this experiment, an index
is inserted in the index set, and specifically in Cactual , when a user
query creates it. For holistic indexing the actual user queries be-
have in exactly the same way as in adaptive indexing, i.e., the first
query will create an adaptive index and subsequent queries refine
it using the very efficient and almost linearly scaling parallel vec-
torized cracking implementation from [44]. The difference is that
with holistic indexing enabled idle CPU resources are exploited to-
wards further refining the adaptive indices in a way which does not
hurt running queries. Since parallel vectorized cracking [44] is de-
signed to be CPU efficient, encountering only very little resource
stalls, we generated kind of a worst-case scenario for holistic in-
dexing: we limited the maximal number of hardware context as-
signed to user queries to 16 (equal to number of physical cores),
leaving at least 16 (otherwise not effectively usable by the prime
user query workload) hardware contexts (“hyper-threads”) avail-
able for holistic indexing. Constantly, our load-checker usually de-
tects 16 idle hardware contexts, and consequently starts 8 holistic
indexing workers (each using two threads) as shown in Figure 6(d).
Figure 7 shows that the combination of using maximal 16 (out of
32) hardware contexts for user queries (performing parallel vec-
torized adaptive indexing [44]), while devoting any remaining idle
hardware context to holistic indexing, improved the overall perfor-
mance by a factor 2 over using all 32 hardware contexts for user
queries (and thus none for holistic indexing).

Figure 6(b) is a breakdown of the performance of holistic index-
ing and adaptive indexing. The y-axis represents the total response
time of the first query, the next 9 queries, etc. The total height of
each bar represents the total response time to run the entire work-
load of 103 queries. The first few queries do not see any improve-
ment because holistic indexing cannot concurrently refine a col-
umn if there are user queries cracking it. This is because initially
columns have not been cracked at all and thus the first few user
queries will lock big pieces for cracking. However, as each col-
umn is cracked into smaller pieces, holistic indexing may invoke
actions to refine a column even if concurrent queries are cracking
it. Essentially, each user query needs to lock at most one piece of
an adaptive index at a time, i.e., the piece it is about to crack, and
thus holistic indexing may choose any of the remaining pieces to
perform further index refinements.

Holistic indexing outperforms adaptive indexing by a factor 2 by
injecting additional index refinements on top of those that adap-
tive indexing does anyway. Figure 6(c) shows the amount of pieces
which have been created in all 10 adaptive indices; holistic index-
ing creates more pieces than adaptive indexing. As a result, future
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user queries need to touch less data
as they find a fine-grained index, and
thus performance improves for holis-
tic indexing. As Figure 8 shows, the
first queries that access the same in-
dex run slower, because they reorga-
nize big partitions. Thus, additional
pieces have to be inserted in the in-
dex as early as possible in the query
sequence.

As discussed in Section 4.2, on some occasions the main holistic
indexing thread waits for all workers to finish before assigning new
tasks, leaving under-utilized CPU resources for some brief periods.
Figure 6(d) shows how the total response time of all workers in
every tuning cycle changes over time and as the query sequence
evolves. The right y-axis shows the number of holistic worker
threads the holistic indexing thread activates whenever it detects
idle CPU resources. The maximum number of workers that holis-
tic indexing can activate is 8. The left y-axis represents the total
response time of all workers during a single tuning cycle. The x-
axis represents the activations of holistic indexing. A single activa-
tion of holistic indexing triggers the activation of multiple holistic
workers. The total response time of the workload is 90 seconds.
Within this amount of time, holistic indexing is activated only 15
times, because of the waiting time (1 second) between two CPU
load measurements and because of the waiting time until all work-
ers finish in every tuning cycle. We observe that the response time
of the workers is high only for the first few activations and reduces
very fast as the index becomes fine-grained. In this way, the system
adapts on its own and eventually no worker is a bottleneck.

Holistic indexing sees even bigger performance benefits when
there is idle time before query processing. When there is idle time
and no workload knowledge, holistic indexing chooses random in-
dexes to insert in Cpotential and refines them until the first query
arrives. Here using the same set-up as in the previous experiment,
we manually induce idle time and holistic indexing adds 10 ran-
dom indices in Cpotential . Figure 9 shows the results. Compared
to adaptive indexing, which does not exploit the a priori idle time
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(22 seconds), holistic indexing ex-
ploits this time to spread tuning ac-
tions over 10 indices. Thus, when
user queries are processed they re-
organize smaller partitions and the
benefit is already obvious in the be-
ginning of the workload compared
to Figure 6(b), where the benefit in
the workload appears after the 10th
query when all indices have been in-
serted in the index set automatically
by the system.

By being able to completely automatically utilize available CPU
resources and direct them towards lightweight actions that may im-
prove future requests, holistic indexing can bring significant per-
formance gains on top of existing indexing approaches. It outper-
forms adaptive indexing by a factor 2 in terms of individual query
performance. At the same time it outperforms offline and online
indexing, especially in the beginning of the workload, when offline
indexing penalizes the first queries with the index building cost and
online indexing does not provide any indexing support until the
100th query. Besides the difference in performance, the qualita-
tive difference described in Table 1, makes holistic indexing a very
appealing indexing approach in modern dynamic environments.
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5.2 Holistic Vs. Multi-core Adaptive Indexing
Assuming there are several CPU cores available in a modern sys-

tem, in holistic indexing we utilize them by spreading auxiliary
tuning actions across multiple indices. An alternative way to “keep
the CPU busy”, is to parallelize the existing adaptive indexing al-
gorithms. In this experiment we study how state-of-the-art adaptive
indexing baselines compare to holistic indexing. In particular, we
study parallel vectorized database cracking (PVDC), parallel vec-
torized stochastic database cracking (PVSDC) [44] and a modified
version of parallel chunked coarse granular index (P-CCGI) [8] that
we name mP-CCGI.

Stochastic cracking aims to provide robustness by performing
auxiliary stochastic indexing actions. Although stochastic crack-
ing studied the option of collecting statistics to target the proper
value ranges to index, it was shown in [21] that reacting immedi-
ately to workload changes by auxiliary stochastic cracking actions
has a better effect (i.e., more robust). This is because in stochas-
tic cracking a running query performs auxiliary random cracking
only within the piece that is already about to be cracked within
a given column and as a result any action brings a benefit as it
imposes more order. Holistic indexing considers a much more
broad space of statistics keeping track of column-statistics to de-
cide which columns to fine tune.

Both stochastic cracking and plain database cracking in this ex-
periment utilize multi-cores as described in the last paragraph of
Section 4. The original P-CCGI algorithm partitions the data into
as many chunks as the available number of threads and the first
query cracks each chunk in parallel having a separate cracking in-
dex for each chunk. Subsequent queries crack the chunks in par-
allel, while they benefit from the initial range partitioning. How-
ever, this way, data that belongs in a single value range is physi-
cally stored in separate chunks/arrays and feeding from there other
relational operators is not compatible with a column-store such as
MonetDB that relies on bulk processing; it does not allow to exploit
tight for loops without intermediate if statements to detect when
we should skip from one chunk to the next during an operator. To
address this we extended the original P-CCGI algorithm [8] with
the ability to consolidate selection results in a single array using
the same techniques that were used for hybrid adaptive indexing
which also operates on multiple chunks (but not in parallel) [31];

each query consolidates only the qualifying value ranges and each
value range needs to be written to the contiguous array by a single
query only, i.e., subsequent queries will only have to do consolida-
tion if they need a new value range never consolidated before. In a
vectorized column-store this could be done without consolidation,
potentially improving performance further as has been indicated by
partial sideways cracking [29]; vectorized processing for adaptive
indexing is an open topic, though, orthogonal to this work.

The workload in this experiment consists of 103 select-project
queries (as in the previous experiment) on 10 integer attributes.
Each attribute consists of 230 uniformly distributed integers. The
value range requested by each query is random while we vary the
number of available CPU cores from 2 to 32, i.e., the maximum
number of cores in our system. For holistic indexing we give half
of the cores to user queries and the rest of the cores are used by
the workers (after testing all possible configurations, we found that
this is the one that performs best in all cases). The labels on top of
the bars that represent the performance of holistic indexing indicate
the distribution of the threads between user queries and workers in
every case (similar to Figure 7).

Figure 11 shows the results. In all cases, the performance im-
proves as we invoke more cores into query processing. For multi-
core database cracking and stochastic cracking the performance
improves because many threads crack in parallel for one query at
a time while for holistic indexing performance improves because
many threads work in the background in parallel with query pro-
cessing to further refine the various indices with auxiliary indexing
actions. Holistic indexing sees a bigger improvement, because it
is active all the time, i.e., maximizing CPU usage.On the contrary,
multi-core vectorized database cracking and multi-core stochastic
cracking improve the performance only during user queries and
only during the cracking actions. Another subtle difference but one
with a major performance impact is that while stochastic cracking
and database cracking target all their adaptive indexing actions on
specific pieces as they are driven by individual queries, holistic in-
dexing spreads its actions across the whole range of the domain
and thus across the whole range of an adaptive index (stochastic
cracking does random actions but only within a single piece). This
creates a nicely balanced index which has more potential to benefit
future queries. The modified version of P-CCGI initially range par-
titions the data, which can be seen as a pre-index step. However,
this is a cost that penalizes the first set of queries.
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Figure 13: More performance gains for holistic indexing as more attributes exist in a schema. All strategies have similar performance.

5.3 Robustness
In our next experiment we study how holistic indexing compares

to parallel database cracking and parallel stochastic cracking in
terms of robustness. We show that holistic indexing maintains the
good properties of adaptive indexing by utilizing the available CPU
resources more effectively. Both holistic indexing and the parallel
variants of adaptive indexing utilize all the available CPU cores.

We test four synthetic workloads. Each workload consists of 103

queries on 10 attributes (⇠100 queries/attribute). Each attribute
consists of 230 uniformly distributed integers. The queries follow
a different pattern in each workload. The first four subfigures in
Figure 10 depict those workload patterns. For each workload, the
respective figure illustrates graphically how a sequence of queries
touches the value domain of a single attribute.

Furthermore, we test holistic indexing in a real-life workload us-
ing data and queries from SkyServer [2]. SkyServer collects as-
tronomical data and the database can be accessed publicly by in-
dividual users and institutions. We pose 104 real user queries that
have been logged by the project servers on the “Photoobjall” table.
The “Photoobjall” table consists of 1.2 Billion tuples. All queries
access the “Ascension” attribute and are posed in exactly the same
chronological order they were logged. The pattern the SkyServer
queries follow is shown in Figure 10(e).

Figure 12 shows the results. For each indexing method we report
the total time needed to process all queries for each workload.

Synthetic Workloads. In all synthetic workloads holistic index-
ing outperforms multi-core database cracking by a factor 2-10 de-
pending on the workload. Multi-core database cracking is strictly
driven by query predicates, and thus, can leave large unindexed
pieces to be reorganized by future queries. For instance, in the se-
quential workload in Figure 10(d), each query cracks a column in
a small piece and in a big piece, and then, a future query needs
to crack the big piece again, resulting in a high cost. Multi-core
stochastic cracking solves these robustness issues by injecting one
extra random cracking action for each user query in order to dis-
tribute cracking more evenly. However, holistic indexing can ma-
terialize an even bigger advantage. This is because it is not re-
stricted to perform auxiliary index refinement actions only during
user queries but it can exploit all possible CPU cycles to refine
the indices, resulting in many more actions taking place in parallel

with user queries. Moreover, holistic indexing spreads the auxil-
iary index refinements across the entire value domain (by choosing
random pivots) without leaving big unindexed pieces. For example,
in the skewed workload in Figure 10(b), both multi-core database
cracking and multi-core stochastic cracking show a similar perfor-
mance, because they restrict the index refinements to a small region
of the domain according to user query predicates, i.e, from 800 mil-
lion to 230. Future queries have to reorganize a big unindexed area,
i.e., from 0 to 800 million; this area is already indexed in holistic
indexing before the 800th query arrives. Thus, holistic indexing
prepares the physical design better for (ad-hoc) future queries.

SkyServer. The SkyServer workload in Figure 10(e) shows the
pattern logged in SkyServer for queries using the “right ascension”
attribute of the “Photoobjall” table. We observe that the queries
follow non-random patterns, i.e., they focus on a specific part of the
sky before moving to a different part. Figure 12 shows that holistic
indexing manages to significantly outperform multi-core database
cracking by inducing auxiliary index refinement actions in parallel
with query processing without penalizing individual user queries.

Overall, in all workloads tested, holistic indexing not only main-
tains the nice properties of the parallel variants of database cracking
and stochastic cracking, but it also enhances the behavior further by
being able to exploit all available CPU resources effectively for a
better prepared physical design.

5.4 More Benefits with Complex Schemas
In this experiment, we show that as the database schema be-

comes more complex by containing more attributes, this brings
more opportunities for holistic indexing to gain in performance;
more attributes make the indexing space bigger and thus any a pri-
ori decisions are even more prone to be wrong. In addition, we test
the various strategies for choosing among the candidate indices and
we show that indeed making random decisions is a robust approach.

Here, we assume a gradually bigger database table which con-
sists of 5-10 attributes. Each attribute consists of 230 uniformly
distributed integers. We fire select-project queries as in the previ-
ous experiments but this time we may query up to X attributes in
every run. Each query touches a single attribute and we vary the
frequency with which each attribute is accessed, i.e., we run both
a random workload where every attribute is evenly queried as well



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30

R
e

sp
o
n
se

 T
im

e
 (

se
c)

Query sequence

MonetDB
Presorted MonetDB
Sideways Cracking

Holistic Indexing

(a) TPC-H Query 1

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25  30

Query sequence

3.5

MonetDB
Presorted MonetDB
Sideways Cracking

Holistic Indexing

(b) TPC-H Query 6

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30

Query sequence

MonetDB
Presorted MonetDB
Sideways Cracking

Holistic Indexing

(c) TPC-H Query 12
Figure 14: TPC-H results (Scale Factor 10, “pre-sorted” times exclude pre-sorting costs; Q1,6,12: 8 sec).

as a skewed workload where some attributes are queried more than
others. For each workload we vary also the workload pattern fol-
lowed by the queries. Here, we present the results for random and
periodic workload patterns. For each case, we perform 103 queries.

We compare holistic indexing using one of the four strategies de-
scribed in Section 4.2 against multi-core variants of database crack-
ing and stochastic cracking. Figure 13 shows the results; for all
cases, holistic indexing materializes a big benefit. As the number
of attributes in the database table grows, the performance benefit
for holistic indexing increases. What happens is that holistic index-
ing makes sure to evenly spread auxiliary index refinement actions
across all attributes in parallel with user queries whenever free CPU
cycles are available. Then, future queries on those attributes can ex-
ploit this refined indexing. Compared to the case where we have a
few attributes, having more attributes means that more heavy in-
dexing actions have to be performed overall in order to crack the
columns into small pieces. This allows holistic indexing to materi-
alize a bigger benefit as it performs those actions in the background
as opposed to only during user queries as in multi-core database
cracking and multi-core stochastic cracking.

In addition, all index choosing strategies have similar perfor-
mance on workloads where attributes are queried on random values
(Figures 13(a) and (c)), because indices are already fine-grained in
such cases (even when some indices are refined more than others in
a skewed workload). However, in case of queries on periodic val-
ues (Figures 13(b) and (d)) the random choice (W4) shows a clear
performance benefit compared to the rest of the strategies, because
it refines indices with big unindexed partitions, and proves to be a
robust design decision.
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Figure 15: Performance of holistic indexing improves while the
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5.5 Design Decisions
Holistic Worker Thread Refinements. In this experiment we

demonstrate how the tuning parameter x, i.e., the number of in-
dex refinements per worker (Figure 2), affects the workload per-
formance. We test five workloads that consist of 103 queries on a
relation with 10 attributes as in Section 5.3 (Figure 12). We vary the

number of index refinements each holistic worker thread does from
1 to 32 and we compare holistic indexing with multi-core variants
of database cracking and stochastic cracking. Figure 15 shows the
results. The more index refinements each thread does, the bigger
the benefit for holistic indexing because more pieces are created
and thus future queries need to refine smaller pieces, touching less
data. However, when we increase the number of index refinements
from 16 to 32, performance does not improve significantly, because
in both cases indices converge very fast to optimal ones. Thus, we
use 16 as the number of index refinements that each holistic worker
thread does in all our experiments.

5.6 TPC-H
In our next experiment, we evaluate holistic indexing on the stan-

dard database benchmark, TPC-H [3]. We compare against offline
indexing and plain scans. We use scale factor 10 and we test with
Queries 1, 6, and 12. For each query type, we created a sequence of
30 variations using the random query generator distributed with the
benchmark. For offline indexing, we created the proper column-
store projections by pre-sorting the data depending on each query
individually, i.e., we created the perfect projection for each query.
Specifically, for Queries 1 and 6 we created a copy of the Lineitem
table sorted on the l_shipdate attribute. For Query 12 we created a
copy of the Lineitem table sorted on the l_receiptdate attribute.

Figure 14 depicts the results. For all cases, holistic indexing
brings a significant advantage, resulting in a robust and stable per-
formance across all queries. The first query is slower as it creates
the first adaptive indices which implies extra data copying but after
that all queries perform significantly better than plain MonetDB.
Holistic indexing matches offline indexing without having to incur
the high offline indexing cost and without requiring any workload
knowledge. The pre-sorting cost for all queries is 8 seconds. For
Query 12, it turns out that pre-sorting does not help. This hap-
pens because even though we may improve the selection by pre-
sorting the Lineitem table, it turns out we hurt the join between the
Lineitem and the Orders table. This is because in the base data, the
Lineitem table contains the order date ordered and this can be ex-
ploited during the join. With holistic indexing we do not face this
problem, because the initial order changes only partially.

5.7 Updates
So far we tested read-only workloads. In this experiment we

demonstrate that holistic indexing maintains its nice properties in
workloads where read-only queries interleave with write queries.
We test two scenarios. In the first scenario (High Frequency Low
Volume - HFLV), 10 inserts arrive every 10 queries. In the second
scenario (Low Frequency High Volume - LFHV), 100 inserts arrive
every 100 queries. In both scenarios the workload consists of 500
select project range queries on a single attribute A and 500 inser-



tions in total on a single attribute A. While all queries are processed
sequentially one after the other, the 11th query arrives 20 seconds
after the 10th query resulting in idle time of 20 seconds in the sys-
tem. Attribute A consists of 109 uniformly distributed integers.
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Updates are temporarily stored in
a pending insertions column. We use
the Ripple algorithm [28] in order to
apply the updates; a pending inserted
value is merged with the original
data if and only if the index partition,
where the specific value belongs, is
refined. Thus, the merging process
happens on-the-fly and maintains the
information of the index. In this
experiment we test single-threaded

adaptive indexing against holistic indexing with a single worker
that refines the index only during idle time. In holistic index-
ing, auxiliary index refinement actions also cause insertions to be
merged. In this way, holistic indexing not only refines the in-
dices but also consumes pending insertions, which speeds up future
queries even more and all that by exploiting idle CPU resources in
parallel with query processing. Figure 16 shows the results. In both
scenarios, holistic indexing maintains its advantage over adaptive
indexing; it is not affected by updates and still provides roughly a
50% improvement.

5.8 Varying Number of Clients
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Figure 17: Varying
number of clients.

In this experiment we test the per-
formance of holistic indexing with
varying number of concurrent clients
in the system. Our workload consists
of 1024 queries on a relation with 10
attributes. We vary the number of
concurrent clients between 1 and 32,
where 32 is the number of CPU cores
in our machine. Figure 17 shows that
holistic indexing brings a big benefit
in case of a few clients. The labels on
top of the bars indicate the distribu-

tion of the available threads across user queries and holistic workers
(similar to Figure 7). When the number of clients increases, holis-
tic indexing does not bring significant benefits, because it easily
detects these cases as it monitors the CPU load continuously and
so it is triggered only if the load is below a threshold.

6. CONCLUSIONS
Ad-hoc environments become more and more common in the

big data era, where we have little workload knowledge and time to
properly tune a database system. In this paper, we present holistic
indexing; it continuously adapts to workload changes and makes
maximum use of available CPU resources, requiring zero human
administration. Holistic indexing continuously monitors the work-
load and refines the physical design with lightweight actions when-
ever spare CPU cycles are detected. We implemented holistic in-
dexing in an open-source column-store DBMS and we demonstrate
that even though holistic indexing runs in the background and on-
the-fly, i.e., while processing user queries, it does not affect the run-
ning queries negatively; instead by continuously refining the phys-
ical design based on the workload and by exploiting spare CPU
cycles it brings substantial improvements. A detailed experimental
analysis shows that holistic indexing maintains all the good benefits
and properties of adaptive indexing, while it brings an additional
performance gain which is typically a factor of 2.

Holistic indexing opens a promising research path. Studying
holistic indexing for traditional row stores or emerging hybrid sys-
tems is an interesting topic. While major database vendors sup-
port hybrid storage layouts, auto-tuning tools may take into account
holistic indexing and depending on the workload decide which in-
dices to build up front and which indices to assign to holistic index-
ing. In addition, even though we considered primarily indices for
improving selections in this paper there is room to consider other
indices that may be improved by holistic indexing such as join in-
dices. Furthermore, this work and most recent work on adaptive in-
dexing has focused on column-stores that work under the bulk pro-
cessing model with the data stored in fixed width and dense arrays
which allows for efficient tight for loops. However, work on partial
sideways cracking [29] and more recently chunked coarse granular
indexing [8] shows that even more benefits for adaptive indexing
are possible if we drop the dense arrays restriction, especially since
this enables effective parallelization [8]. This has side-effects of
course to the whole architecture of a database system as it affects
the design and access patterns of all relational operators. Thus, it is
very interesting to investigate whether it is beneficial to drop certain
restrictions and reconsider the whole architecture and data flow in
column-stores to accommodate further adaptive indexing benefits.
Finally, in this paper we focused on improving the overall response
time of a workload but further interesting directions may rise once
we consider energy consumption, targeting systems with the maxi-
mum performance but within specific energy bounds.
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