
Holistic Indexing:
Offline, Online and Adaptive Indexing in the Same Kernel

Eleni Petraki
CWI Amsterdam
petraki@cwi.nl

Expected Graduation Date: 2016
Supervised by Stratos Idreos

ABSTRACT
Proper physical design is a momentous issue for the performance of
modern database systems and applications. Nowadays, a growing
amount of applications require the execution of dynamic and ex-
ploratory workloads with unpredictable characteristics that change
over time, e.g., social networks, scientific databases and multime-
dia databases. In addition, as most modern applications move to
the big data era, investing time and resources in building the wrong
set of indexes over large collections of data can severely affect per-
formance.

Offline, online and adaptive indexing are three distinct approaches
to the problem of automating the physical design choices. Offline
indexing is best in static environments with stable workloads. On-
line indexing is best in relatively dynamic environments where the
query workload can be monitored. Adaptive indexing is best in
fully dynamic environments where no idle time or workload knowl-
edge may be assumed. We observe that these three approaches are
complementary, while none of them can satisfy the needs of mod-
ern applications in isolation.

We envision a new index selection approach, holistic indexing
that excels its predecessors by combining the best features of of-
fline, online and adaptive indexing while overcoming their weak-
nesses. The main goal is the creation of a database kernel that can
autonomously create partial indexes which are continuously refined
during query processing as in adaptive indexing but at the same
time the system continuously detects any opportunity to improve
the physical design offline; whenever any idle time occurs it tries
to exploit knowledge gathered during query processing to refine ex-
isting indexes further or create new ones. We sketch the research
space and the new challenges such a direction brings.

Categories and Subject Descriptors: H.2 [DATABASE MAN-
AGEMENT]: Physical Design - Access Methods
H.3 [INFORMATION STORAGE AND RETRIEVAL]: Content
Analysis and Indexing - Indexing methods

General Terms: Algorithms, Performance, Design

Keywords: Holistic Indexing, Self-organization

1. INTRODUCTION
As we increase our ability to collect more and more data, the

usage of data goes beyond the strict and static query processing
paradigm of the past. Nowadays, modern applications such as sci-
entific data management, social networks, web logs, etc. bring new
challenges. In particular, the database size grows quickly to un-
precedented amounts, while the query processing patterns follow
an exploratory behavior. For example, an astronomer browses huge
piles of scientific data in search for interesting patterns in the stars
while a log analyst browses Terabytes of daily logs in search for
interesting usage patterns.

The Problem. Physical design, i.e., proper index selection has
always been one of the predominant performance factors for data
management systems (DBMS). In the new era of dynamic and ex-
ploratory environments, physical design becomes especially hard
given the instability of the workload and the continuous stream
of big data; a physical design choice is not necessarily correct or
useful for long stretches of time while at the same time workload
knowledge is scarce given the exploratory user behavior.

State of the Art. In the past, the choice of the proper index col-
lection was assigned to database administrators (DBAs). However,
as applications became more and more complex index selection be-
came too complex for human administration. Today, all major com-
mercial DBMSs offer auto-tuning tools to accomplish automatic in-
dex selection [1, 6, 17]. There are three indexing approaches con-
cerning when they perform the workload analysis and when they
build the physical design. Offline indexing assumes enough work-
load knowledge and idle time to built the physical design before
queries arrive to the system [1, 2, 3, 5, 6, 17]. Online indexing
makes a step towards more dynamic environments by allowing for
continuous monitoring and periodically evaluating the physical de-
sign [4, 15, 16]. Adaptive indexing is a fully dynamic approach as it
assumes no workload knowledge and requires no idle time; indexes
are built continuously, partially and incrementally as part of query
processing [7, 8, 10, 11, 12, 13, 14] .

Observation. Although the above indexing methods share a
common objective, they target different environments; they are com-
plementary. Offline indexing fits best in static environments where
the workload is known a priori while online indexing assumes that
it can properly monitor and predict the workload. Adaptive index-
ing does not try to predict the workload; it only reacts on a single
query at a time. Similarly, offline indexing assumes enough idle
time to built the physical design a priori while online indexing in-
terleaves index creation with queries. Adaptive indexing does not
require or exploit any idle time.

Motivation. Modern applications with fully dynamic and ex-
ploratory workloads can benefit from all indexing approaches. None
of them in isolation can provide a system that adapts instantly like

15

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD/PODS’12 PhD Symposium, May 20, 2012, Scottsdale, AZ, USA.
Copyright 2012 ACM 978-1-4503-1326-1/12/05...$10.00.

Indexing Statistical analysis Exploitation of Exploitation of idle time Incremental indexing Workload
a-priori idle time during workload execution

Offline
√ √ × × static

Online
√ × √ × dynamic

Adaptive × × × √
dynamic

Holistic
√ √ √ √

dynamic

Table 1: Features of offline, online, adaptive and holistic indexing.
adaptive indexing; and at the same time it can monitor the work-
load and observe long term patterns like online indexing; and at the
same time it can exploit idle time and workload knowledge to built
indexes that are anticipated to be useful like offline indexing.

For example, assume a scenario from the domain of scientific
databases in astronomy. As new Terabyte of data arrive daily, there
will be a standard set of queries which the scientists want to always
run and a given minimum time which they are willing to wait for
this tuning to take place. For those queries an offline indexing -like
approach is useful. However, not all patterns are known a priori as
the scientists will now start exploring the data. As queries arrive
which are not covered by the existing indexes, the system starts
building partial indexes and incrementally refining them as more
queries arrive like adaptive indexing. At the same time it contin-
uously monitors the query patterns for overall patterns like online
indexing.

Vision. To address the needs of modern exploratory applications
we introduce a novel indexing approach, Holistic Indexing. Holis-
tic indexing targets exactly the motivation as described in the pre-
vious paragraph; it continuously monitors and analyzes the work-
load, instantly adjusting to changes in workload characteristics; it
can exploit any idle time or any workload knowledge as it appears.
Indexes are partial and incremental and are built and refined as part
of query processing but also during idle time. There is no external
tool or human administration; the continuous indexing properties
are embedded in the database kernel and are part of the query pro-
cessing and storage engine.

The new opportunities brought by holistic indexing are visual-
ized in Table 1 and Figure 1. In offline indexing, statistical analysis
of a given workload and index building take place before the work-
load execution. During workload processing there are idle time
intervals that are not exploited. In online indexing, statistical anal-
ysis is continuous and triggers physical design reorganization. The
physical design is reorganized on-the-fly or during idle time. Both
offline and online indexing refer to full indexing, i.e., indexes on
tables cover all the rows equally even if some rows are needed of-
ten and some never. On the other hand, adaptive indexing reacts
to workload changes instantly and refines the physical design with
partial and incremental indexing during query processing. It does
not collect any statistical information and it does not exploit the
idle time intervals between query processing.

Holistic indexing aims to monitor the workload continuously and
exploit the collected information to refine the physical design both
during query processing and during idle time. In contrast to offline
and online indexing, and similar to adaptive indexing, in holistic
indexing indexes are built partially and incrementally. In this pa-
per, we sketch the research space towards realizing database kernels
with holistic indexing.

Paper Structure. The rest of the paper is structured as follows.
Section 2 provides background discussion and an overview of re-
lated work. Then, Section 3 sketches the research path and the
new challenges brought by holistic indexing. Section 4 presents
a brief proof of concept experimental analysis and then Section 4
concludes the paper.

� �

����������	�
���

������	
�����
������������

��	������	
�	�	
����

������	
�����
�����
�

���������������

��
������

�	
��������	�
���

���������	�
���

�����������	�
���

Figure 1: Query sequence evolution with indexing.

2. RELATED WORK
The last fifteen years, there has been extensive work on auto-

mated physical database design. The literature can be separated
into three areas; offline, online and adaptive indexing. In this sec-
tion, we briefly sketch the main concepts in each area and we high-
light the main differences with our vision towards holistic indexing.

Offline Indexing. One of the earliest seminal works on auto-
mated physical database design appeared in 1997 [5]. Among the
novel techniques that this paper introduced are the “what-if" API
and the dependence on the optimizer. The former refers to hypo-
thetical candidate indexes that instead of being materialized, they
are simulated. The latter refers to the use of optimizer cost estima-
tions to decide an appropriate set of indexes. In general an offline
auto-tuning tool takes as input a known representative workload
W of queries and examines various combinations of candidate in-
dexes. The optimizer costs help determine the expected cost to run
W with a candidate index configuration. In the end, the tool out-
puts a configuration which the database administrator may choose
to implement.

Since then, several research efforts have helped to push the state
of the art further in offline indexing [1, 2, 3, 6, 17]. The fundamen-
tal limitation of offline indexing appears when we cannot safely
predict or know the workload a priori.

Online Indexing. Online indexing addresses this limitation of
offline indexing. The main idea is that the system continuously
monitors the workload and the performance and tries to periodi-
cally reevaluate the physical design as opposed to making all deci-
sions a priori.

System COLT was one of the first online indexing approaches
[16]. COLT monitors the workload continuously, collecting statis-
tics. Periodically, after specific epochs, e.g., every N queries, the
physical design is reconsidered and new indexes may be created or
old ones are dropped. Similarly, a later approach on online index-
ing improves by requiring less calls to the optimizer to obtain cost
estimations [4]. Moreover [4] takes into consideration additional
overheads for online index tuning, e.g., index interactions. Soft in-

16

� �

��
�
�
�
��
��
�
��
	
�
�	
��
��

��
�����
�
�

�

	
�
�
�
�
�
��
��
��
��
�	
��
��

	
�
�
�
�
�
��
��
��
��
�	
��
��

���������	
���
����
��������� ����������	
���
����
��������

� �

����
�����
���������

����
�����
���������

����
�����
���������

�������

�������

�������

����������	�
 ����������	�

����
����	
��������

����
�����
���������

����
�����
���������

����
������
���������

�������

�������

�������

������	

�������

����
�����
��������

Figure 2: Adaptive indexing.

dexes push the state of the art even further by reducing the index
creation cost [15]. The idea is that the scan for building an index
online is shared with possible concurrent queries on the same data.

The fundamental limitation of online indexing is that it imposes
significant overhead during query processing, i.e., the queries that
happen to arrive during the tuning period face a significant penalty.
Thus, online indexing is best for relatively dynamic scenarios where
offline indexing cannot cope. At the same time the workload should
not change very often causing continuous and costly physical de-
sign adjustments.

Adaptive Indexing. Adaptive indexing, the most recent index-
ing approach comes to tackle the problem of fully dynamic and un-
predictable workloads [7, 8, 9, 10, 11, 12, 13, 14]. Database crack-
ing was the first adaptive indexing approach [12] proposed in the
context of column-stores. Indexes are built partially and incremen-
tally during query processing and according to query predicates. A
simplified example is shown in Figure 2; with every query the un-
derlying storage changes, adapting to the queries. Each query is
treated as a hint on how the data should be stored and triggers a
clustering of the underlying columns. Future queries exploit past
clustering but also introduce new clusters. With more queries ar-
riving, columns become more and more structured, with smaller
and smaller pieces. As the partitioning information increases, per-
formance improves. The incremental indexing actions are fully
integrated with query processing and are performed by the select
operators. Database cracking relies on the bulk processing prop-
erty of modern column-stores to consume and cluster a full column
at a time and in one go [12]. Cracking has been extended to sup-
port updates [11], multi attribute queries [13], partial cracking [13],
concurrency control [7], partition-merge -like logic [9, 14]. In ad-
dition, [8] shows how to benchmark adaptive indexing techniques
while [10] shows how to be robust on query workloads via stochas-
tic cracking.

The main limitation of adaptive indexing is that it does not ex-
ploit any available knowledge or slack time; the whole design is
based on instant reaction to incoming queries. However, in mod-
ern applications such as social networks or web logs, we may have
bursts of queries followed by long stretches of idle time.

Holistic indexing. Our vision, holistic indexing, comes to ad-
dress all limitations mentioned for the current approaches while
the goal is that at the same time we maintain all the nice proper-
ties. The system monitors the workload continuously like online
indexing but also instantly adapts like adaptive indexing. It can use
offline idle time like offline indexing but similar to adaptive index-
ing it does not have to necessarily create full/complete indexes; it

can rely on incremental adaptive indexes which it continuously re-
fines either triggered by queries or by statistics collection and idle
time. In addition, similar to adaptive indexing methods, our goal is
to create a new kernel that integrates this functionality in its engine
as opposed to relying on external tools; this allows for performance
enhancements which are hard otherwise.

3. HOLISTIC INDEXING
The previous sections gave the basic background and motivation

for holistic indexing. In this section, we give a first sketch of the
main challenges and research paths towards realizing the holistic
indexing vision.

Main Parameters. Workload knowledge and idle time are the
two critical parameters that have a decisive effect on physical da-
tabase design. Knowledge, or statistical information, about the
workload is used to determine the set of relevant indexes that will
have the maximum benefit. Idle time is needed in order to perform
any workload analysis and critically in order to actually prepare the
physical design.

Existing Cases. There are two cases that have been studied in
the past, namely the two extreme cases; (a) when there is enough
idle time and workload knowledge which is the case where offline
indexing excels and (b) when there is no idle time or workload
knowledge which is when adaptive indexing excels.

New Challenges. Despite the extensive research on the index
selection problem, there are still cases that are not covered ade-
quately by the literature. These cases are the main focus in our re-
search and occur in dynamic and exploratory environments where
the mix of idle time and workload knowledge is not always clearly
distinguished as in the past. We discuss these cases below.

Some Idle Time, and Enough Knowledge. A natural case to
consider is when we simply do not have enough idle time to create
all necessary indexes. That is, even if our workload knowledge is
adequate such that we know exactly which indexes we would like to
create, the available time is not enough to actually materialize these
indexes. Still, though, some idle time is available and we would like
to exploit it. Such cases may typically occur at initialization time,
i.e., before the first few queries arrive. However, this scenario is
also valid for online analysis, i.e., the system monitors the workload
and acquires a good understanding about the workload patterns.
Then, an amount of idle time appears because there is a pause in
incoming queries. We may know exactly how much idle time we
have or, more typically, we will not know. The question that arises
then is what we can do during this idle time to exploit the available
knowledge such that we are better prepared for future queries.

Spread Resources with Adaptive Indexes. Naturally, one ap-
proach would be to choose and build one index at a time, i.e., start-
ing with the index that is expected to have the biggest global impact
in the expected workload; once idle time is over, we stop indexing.
Such approaches can be quite easily implemented by modern of-
fline analysis tools. However, by investing on only a few or even
on only one index may have a minimal impact to the workload. For
example, if 5 minutes of idle time appear, then this is not enough to
build even a single index in a reasonably sized database. Instead,
we investigate the option of exploiting partial and incremental in-
dexes inspired by adaptive indexing approaches. For example, as-
sume that instead of building a single index at 100%, holistic index
may choose to build 20 indexes at 5% each.

With the ability to build partial and incremental indexes, the
question is how to spread the idle time and the resources to the
various candidate indexes. Assuming that the amount of idle time
available will not typically be known, then it makes sense to spread
the resources across multiple indexes, instead of concentrating on

17

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 10 100 1000 10000

C
u

m
u

la
ti
v
e

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
ic

ro
s
e

c
)

Query sequence

a) T_init=2.4s, T_total= 2.5s, X=10

Scan
Offline Indexing

Database Cracking
Holistic Indexing

 1 10 100 1000 10000

Query sequence

b) T_init=4.8s, T_total= 7.2s, X=100

 1 10 100 1000 10000

Query sequence

c) T_init=6.8s, T_total= 12.1s, X=1000

Figure 3: Gains of holistic indexing during a query sequence (X: index refinements in each idle time window, Time_sort=28.4s).
only one index at a time. In technical terms this can be translated
in applying random database cracking actions on specific columns,
i.e., if a given collection of columns is known to be relevant to the
workload, then we can start applying random cracking actions in
a round robin fashion. A more sophisticated approach can even
rank the columns depending on the frequency of appearance in the
workload, their size, etc.

Modeling. Our approach is to create a cost model which contin-
uously monitors several parameters and can give us the answer to
the question: “if we detect a couple of idle milliseconds on which
column should we apply a random crack action?". We observe that
once columns are cracked enough such that pieces fit into the CPU
caches, then performance does not further improve by extra index
refinement. By monitoring how many pieces exist in each crack
column and thus knowing the average size of pieces in each col-
umn, we know how far away we are from the optimal for each
index. This allows the creation of a ranking scheme which is con-
tinuously maintained during query processing and during auxiliary
tuning actions; it is always up to date and ready to reveal what the
next tuning action should be if some idle time appears.

Continuous Tuning. The approach described above leads to a
continuous tuning scheme, i.e., if queries do not trigger adaptive
indexing, idle time is detected and the system uses statistics to con-
tinue triggering adaptive indexing -like actions.

No Knowledge. A special case of the above scenario is that there
is no workload knowledge available. For example, such a scenario
can occur immediately when we initiate a system with some data.
Then, holistic indexing can use catalog information and start to ran-
domly spread tuning actions across many columns.

No Time. Another special case is when we keep collecting good
statistics but no idle time appears such as we can exploit it. As in
original adaptive indexing, holistic indexing continuously refines
the physical design, i.e., during select operators of running queries
but now a new opportunity appears. Holistic indexing targets to
exploit knowledge to improve even more; even when no idle time
appears. For example, assume a query q with a select operator on
a given column A which leads into an index refinement action by
cracking based on predicate p of q. Holistic indexing may choose
to introduce further random cracks on column A if it detects that
this column and this value range is rather hot for this part of the
workload, e.g., because more than n queries cracked this column in
the past.

Putting it All Together. Overall our goal is to create a continu-
ous tuning system where numerous partial and incremental indexes
co-exist and are continuously refined whenever such a chance oc-
curs during query processing or during idle time. The challenges
imposed towards realizing this vision spread across multiple areas.
For example, there are algorithmic issues to tackle regarding how to

properly apply multiple tuning actions in one go over a single index
such that we can exploit a big chunk of workload knowledge effi-
ciently. Similarly, there are database architecture issues to properly
design a system that can continuously detect and exploit idle time
as well as to continuously monitor index refinement actions. Our
goal is to design and implement such a system on top of modern
column-stores.

4. HOLISTIC INDEXING OPPORTUNITIES
In this section, we present a brief experimental analysis to demon-

strate the strong potential benefits of holistic indexing. We compare
holistic indexing with database cracking, offline indexing and with
plain scans. All experiments and design are on top of the open
source column-store, MonetDB. For the proof of concept’s analy-
sis, our holistic indexing implementation is a hand-tuned variation
of the database cracking module in MonetDB, where we manually
induce random auxiliary cracking actions during idle time. In ad-
dition, we artificially induce and control idle time.

We use a 3.40 GHz Intel(R) Core(TM) i7-2600 processor equipped
with 16 GB RAM. The operating system is Fedora 16. The ex-
periments are on a relational table that consists of 10 attributes
[A1, ...,A10] each containing 108 uniformly distributed integers in
[1, 108]. Each query is a select project query with selectivity 1%.
The value range requested by each query is random. All queries are
of the following form:

select Ai from R where Ai ≥ low and Ai < high

Exp1:Single Column Experiment. Our first experiment aims
to show the strong potential in exploiting idle time with holistic in-
dexing. The query workload consists of 104 queries. We manually
enforce an amount of idle time T before the first query arrives. Af-
ter the first query, we again manually enforce idle time every 102

queries. For ease of presentation and experimentation, in this proof
of concept analysis we assume as idle time the time needed to apply
X random index refinement actions.

Figure 3 shows the results. On the x-axis queries are ranked in
execution order while the the y-axis represents the cumulative re-
sponse time as the query sequence evolves. Each graph in Figure
3 uses a different X and thus a different amount of idle time. For
example, the experiment for Figure 3(a) enforces 10 random ac-
tions in each idle time window which results in a total amount of
2.5 seconds idle time across the whole query sequence.

The performance of plain scans, i.e., when no indexing is avail-
able, remains stable regardless of the amount of idle time as there
is no way to exploit this free time. The same is true for adaptive
indexing; database cracking is only triggered by incoming queries.
Cracking continuously improves performance but only as long as

18

Indexing X=10 X=100 X=1000

Scan 6746 s 6746 s 6746 s
Offline 28.5 s 28.5 s 28.5 s

Adaptive 13 s 13 s 13 s
Holistic 7.3 s 3.6 s 1.6 s

Table 2: Exp1: Overall gains of holistic indexing in total time.
X: index refinements in each idle time window.
queries arrive to trigger index refinement. Offline indexing on the
other hand improves when more idle time is available but does so
only marginally as, in general, it can exploit only the idle time,
which appears before the very first query. In Figure 3 it takes 28
seconds to completely sort the respective column, i.e., to create the
complete index assuming a priori workload knowledge. However,
the time Tinit , i.e., the a priori idle time is much smaller and thus
queries start arriving before the index is ready and have to wait for
indexing to finish.

Contrary to other approaches, holistic indexing demonstrates a
strong potential by managing to exploit all idle time in a way that
can benefit future queries, i.e., by forcing auxiliary index refine-
ments actions. As the available idle time grows, i.e., from Figure
3(a) to Figure 3(b) and then to Figure 3(c) holistic indexing im-
proves performance even more. The total impact of holistic index-
ing is also shown more clearly in Table 2 which reports the total
time needed to run all 104 queries for each case.

Exp2:Multi-Column Experiment. The previous experiment
demonstrated that exploiting idle time can bring significant im-
provements. Our next proof of concept experiment demonstrates
a more realistic scenario where multiple columns are indexed. This
time the workload is known and ideally we would like to index all
10 columns of our table, creating 10 single column indexes. How-
ever, the restriction in our scenario is that the idle time available a
priori is enough to build only 2 of those indexes fully. After this
time, queries on all 10 columns arrive (in a round robin fashion).

Figure 4 shows the results. Offline indexing exploits the idle time
to build two full indexes. In this case, the choice is random as all
columns have exactly the same weight in the expected workload.
Thus, when queries arrive, the system can exploit efficient binary
searches for the select operators in the query plans of the indexed
columns while for the rest of the columns it has to rely on plain
scans. In other words only 20% of the queries can exploit indexing.
For example, the first two queries in Figure 4 are on the indexed
attributes and thus they enjoy good performance. However, as of
the third query, queries on non indexed attributes arrive and the
cumulative response time grows quickly.

On the contrary, with holistic indexing we build all 10 indexes a
priori, but we apply only 100 index refinement actions on each one.
Specifically, we apply 100 random cracking actions on each index.
The set up of the experiment is done such that the amount of time
needed to sort 2 columns with offline full indexing is the same as
the time needed to run 100 cracking actions on each one of the 10
columns. In this case this time is 55 seconds which is assumed to
be the idle time in this proof of concept experiment. By exploiting
this idle time holistic indexing can optimize all needed columns
and thus every single query in the workload may benefit instantly as
opposed to only 20% of the queries with full indexing. In addition,
with every query the indexes are further refined. In this way, in
the end of the query sequence holistic indexing has materialized
a 2 orders of magnitude benefit over full indexing. Only for the
first two queries holistic indexing is slower because all queries so
far are on the fully indexed attributes. However, once all workload
patterns appear holistic indexing quickly gains over full indexing.

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 10 100 1000 10000C
u
m

u
la

ti
v
e
 r

e
s
p
.
ti
m

e
 (

m
ic

ro
s
e
c
)

Queries

Offline Indexing
Holistic Indexing

Figure 4: Gains of holistic indexing with multiple indexes.

5. CONCLUSIONS
As we enter an era with more and more dynamic and exploratory

applications over big data, proper physical design choices become
even more crucial towards achieving good performance and re-
source management. Holistic indexing aims to design a new data-
base kernel that continuously tunes, both during query processing
and during idle time. Every opportunity to improve the physical
design is exploited by continuously tuning incremental indexes and
continuously maintaining statistics about the system usage. Holis-
tic indexing is inspired by the strong literature and experiences in
the indexing research field but at the same time it brings a new
mentality regarding how and when we tune. As such it creates a
plethora of interesting research problems in the indexing and data-
base architecture fields.

6. REFERENCES
[1] S. Agrawal, S. Chaudhuri, L. Kollar, A. P. Marathe, V. R. Narasayya,

and M. Syamala. Database Tuning Advisor for Microsoft SQL
Server 2005. In VLDB, 2004.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection
of materialized views and indexes in sql databases. In VLDB, 2000.

[3] N. Bruno and S. Chaudhuri. Automatic Physical Database Tuning: A
Relaxation-based Approach. In SIGMOD, 2005.

[4] N. Bruno and S. Chaudhuri. An online approach to physical design
tuning. In ICDE, 2007.

[5] S. Chaudhuri and V. Narasayya. An efficient cost-driven index
selection tool for Microsoft SQL Server. In VLDB, 1997.

[6] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaït, and M. Ziauddin.
Automatic sql tuning in oracle 10g. In VLDB, 2004.

[7] G. Graefe, F. Halim, S. Idreos, H. Kuno, and S. Manegold.
Concurrency control for adaptive indexing. In PVLDB, 2012.

[8] G. Graefe, S. Idreos, H. A. Kuno, and S. Manegold. Benchmarking
adaptive indexing. In TPCTC, 2010.

[9] G. Graefe and H. A. Kuno. Self-selecting, self-tuning, incrementally
optimized indexes. In EDBT, 2010.

[10] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic database
cracking: Towards robust adaptive indexing in main-memory
column-stores. In PVLDB, 2012.

[11] S. Idreos, M. Kersten, and S. Manegold. Updating a Cracked
Database. SIGMOD 2007.

[12] S. Idreos, M. Kersten, and S. Manegold. Database Cracking. In
CIDR, 2007.

[13] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple
reconstruction in column-stores. In SIGMOD, 2009.

[14] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging what’s
cracked, cracking what’s merged: Adaptive indexing in
main-memory column-stores. PVLDB, 4(9):585–597, 2011.

[15] M. Lühring, K.-U. Sattler, K. S. 0002, and E. Schallehn.
Autonomous management of soft indexes. In ICDE Workshops,
2007.

[16] K. Schnaitter et al. COLT: Continuous On-Line Database Tuning. In
SIGMOD, 2006.

[17] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 Design Advisor: Integrated
Automatic Physical Database Design. In VLDB, 2004.

19

